{ "info": { "author": "Corien Bary, Iris Hendrickx, Peter Berck, Wessel Stoop", "author_email": "c.bary@let.ru.nl", "bugtrack_url": null, "classifiers": [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Operating System :: POSIX", "Programming Language :: Python :: 3", "Topic :: Internet :: WWW/HTTP :: WSGI :: Application", "Topic :: Text Processing :: Linguistic" ], "description": "# glem\nGLEM is a lemmatizer for Ancient Greek.\n\nIt has been created in the project 'Unraveling the Language of Perspective' (http://ncs.ruhosting.nl/perspective/), which is supported by the EU under FP7, ERC Starting Grant 338421-Perspective.\n\nThe paper 'A memory-based lemmatizer for Ancient Greek' reports on how it works, what material it uses, and what the accuracy is. It can be found in the repository and at http://dl.acm.org/citation.cfm?id=3078100.\n\nA webservice where you can upload texts that you want to have lemmatized can be found at https://webservices-lst.science.ru.nl/portal/\n\n\nDependencies\n============\n\nJust **Python 3** for the simple word list based lemmatizer.\n\nTo add machine learning based lemmatization that also takes into account the context, you also need **[Frog](https://languagemachines.github.io/frog/)**. By far the easiest way to install Frog is to use [LaMachine](https://proycon.github.io/LaMachine/).\n\nInstallation\n=============\n\nRun: ``python3 setup.py install``\n\nWe recommend using LaMachine or a Python virtual environment of your own. Alternatively for a global installation,\nprepend ``sudo``.\n\n\nExample usage\n=============\n\nGlem comes with a pretrained model, based on lemmas chosen by humans (in the UiO PROIEL project, PI: Dag Haug), for Herodotus. If you are inside the Lamachine environment (something like ```lamachine/bin/activate```), you can use it (with or without Frog) as follows:\n\n```glem -f input.txt```\n\nThe files for this model can be found in ```glem/pretrained_models/herodotus``` .", "description_content_type": "", "docs_url": null, "download_url": "", "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "home_page": "https://github.com/GreekPerspective/glem", "keywords": "nlp computational_linguistics entities linguistics ancient_greek,lemmatizer lemmatization frog clam webservice rest", "license": "GPL", "maintainer": "", "maintainer_email": "", "name": "Glem", "package_url": "https://pypi.org/project/Glem/", "platform": "", "project_url": "https://pypi.org/project/Glem/", "project_urls": { "Homepage": "https://github.com/GreekPerspective/glem" }, "release_url": "https://pypi.org/project/Glem/1.3.0/", "requires_dist": null, "requires_python": "", "summary": "GLEM is a lemmatizer for Ancient Greek.", "version": "1.3.0", "yanked": false, "yanked_reason": null }, "last_serial": 6063000, "releases": { "1.2.0": [ { "comment_text": "", "digests": { "md5": "a5ad75eb6d6c7fa6efb2642b1c14ec2c", "sha256": "4d78bc366ecf9805b3256241631efcaa520873746f9a0b9e4a5ddb53994e8181" }, "downloads": -1, "filename": "Glem-1.2.0.tar.gz", "has_sig": false, "md5_digest": "a5ad75eb6d6c7fa6efb2642b1c14ec2c", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 15791, "upload_time": "2019-10-30T21:25:48", "upload_time_iso_8601": "2019-10-30T21:25:48.818172Z", "url": "https://files.pythonhosted.org/packages/6c/a7/8ffcaafc46f1f555fad89512503de15ace41ee61b78a06f16822e8c596de/Glem-1.2.0.tar.gz", "yanked": false, "yanked_reason": null } ], "1.3.0": [ { "comment_text": "", "digests": { "md5": "0408d68cfe77cb984cdb90906c0577af", "sha256": "7b71ad9c2bf0b4c98d9d270970c40b43b85f6e2c22317d7596f109acf2d83af3" }, "downloads": -1, "filename": "Glem-1.3.0.tar.gz", "has_sig": false, "md5_digest": "0408d68cfe77cb984cdb90906c0577af", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 15829, "upload_time": "2019-11-01T11:34:53", "upload_time_iso_8601": "2019-11-01T11:34:53.662344Z", "url": "https://files.pythonhosted.org/packages/3d/55/83e6dc66f4707e1f33a7a70804a56c036f0b6a8d9d84455b3585d9a4abaf/Glem-1.3.0.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "md5": "0408d68cfe77cb984cdb90906c0577af", "sha256": "7b71ad9c2bf0b4c98d9d270970c40b43b85f6e2c22317d7596f109acf2d83af3" }, "downloads": -1, "filename": "Glem-1.3.0.tar.gz", "has_sig": false, "md5_digest": "0408d68cfe77cb984cdb90906c0577af", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 15829, "upload_time": "2019-11-01T11:34:53", "upload_time_iso_8601": "2019-11-01T11:34:53.662344Z", "url": "https://files.pythonhosted.org/packages/3d/55/83e6dc66f4707e1f33a7a70804a56c036f0b6a8d9d84455b3585d9a4abaf/Glem-1.3.0.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }