{ "info": { "author": "Sa\u0161o Karakati\u010d", "author_email": "karakatic@gmail.com", "bugtrack_url": null, "classifiers": [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Software Development" ], "description": "# EvoPreprocess\n\nEvoPreprocess is a Python toolkit for sampling datasets, instance weighting, and feature selection. It is compatible with [scikit-learn](http://scikit-learn.org/stable/) and [imbalanced-learn](https://imbalanced-learn.readthedocs.io/en/stable/). It is based on [NiaPy](https://github.com/NiaOrg/NiaPy) library for the implementation of nature-inspired algorithms and is distributed under GNU General Public License v3.0 license.\n\n## Getting Started\n\nThese instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.\n\n### Requirements\n- Python 3.6+\n- PIP\n\n### Dependencies\nEvoSampling requires:\n\n- numpy\n- scipy\n- scikit-learn\n- imbalanced-learn\n- NiaPy(>=2.0.0)\n\n### Installation\nInstall EvoPreprocess with pip:\n\n```sh\n$ pip install evopreprocess\n```\nTo install EvoPreprocess on Fedora:\n\n```sh\n$ dnf install python-EvoPreprocess\n```\n\nOr directly from the source code:\n\n```sh\n$ git clone https://github.com/karakatic/EvoPreprocess.git\n$ cd evopreprocess\n$ python setup.py install\n```\n\n# Usage\n\nAfter installation, the package can be imported:\n\n```sh\n$ python\n>>> import evopreprocess\n>>> evopreprocess.__version__\n```\n\n## Data sampling\n\n### Simple data sampling example\n\n```python\nfrom sklearn.datasets import load_breast_cancer\nfrom evopreprocess.data_sampling import EvoSampling\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Print the size of dataset\nprint(dataset.data.shape, len(dataset.target))\n\n# Sample instances of dataset with default settings with EvoSampling\nX_resampled, y_resampled = EvoSampling().fit_resample(dataset.data, dataset.target)\n\n# Print the size of dataset after sampling\nprint(X_resampled.shape, len(y_resampled))\n```\n\n### Data sampling for regression with custom nature-inspired algorithm and other custom settings\n\n```python\nimport niapy.algorithms.basic as nia\nfrom sklearn.datasets import load_boston\nfrom sklearn.tree import DecisionTreeRegressor\nfrom evopreprocess.data_sampling import EvoSampling\n\n# Load regression data\ndataset = load_boston()\n\n# Print the size of dataset\nprint(dataset.data.shape, len(dataset.target))\n\n# Sample instances of dataset with custom settings and regression with EvoSampling\nX_resampled, y_resampled = EvoSampling(\n evaluator=DecisionTreeRegressor(),\n optimizer=nia.EvolutionStrategyMpL,\n n_folds=5,\n n_runs=5,\n n_jobs=4\n).fit_resample(dataset.data, dataset.target)\n\n# Print the size of dataset after sampling\nprint(X_resampled.shape, len(y_resampled))\n```\n\n### Data sampling with scikit-learn\n\n```python\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.tree import DecisionTreeClassifier\nfrom evopreprocess.data_sampling import EvoSampling\n\n# Set the random seed for the reproducibility\nrandom_seed = 1111\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Split the dataset to training and testing set\nX_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target,\n test_size=0.33,\n random_state=random_seed)\n\n# Train the decision tree model\ncls = DecisionTreeClassifier(random_state=random_seed)\ncls.fit(X_train, y_train)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree classifier on original data\nprint(X_train.shape, accuracy_score(y_test, cls.predict(X_test)), sep=': ')\n\n# Sample the data with random_seed set\nevo = EvoSampling(n_folds=3, random_seed=random_seed)\nX_resampled, y_resampled = evo.fit_resample(X_train, y_train)\n\n# Fit the decision tree model\ncls.fit(X_resampled, y_resampled)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree classifier on original data\nprint(X_resampled.shape, accuracy_score(y_test, cls.predict(X_test)), sep=': ')\n```\n\n## Instance weighting\n\n### Simple instance weighting example\n\n```python\nfrom sklearn.datasets import load_breast_cancer\nfrom evopreprocess.data_weighting import EvoWeighting\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Get weights for the instances\ninstance_weights = EvoWeighting(random_seed=123).reweight(dataset.data, dataset.target)\n\n# Print the weights for instances\nprint(instance_weights)\n```\n\n### Instance weighting with scikit-learn\n\n```python\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.tree import DecisionTreeClassifier\nfrom evopreprocess.data_weighting import EvoWeighting\n\n# Set the random seed for the reproducibility\nrandom_seed = 1234\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Split the dataset to training and testing set\nX_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target,\n test_size=0.33,\n random_state=random_seed)\n\n# Train the decision tree model with custom instance weights\ncls = DecisionTreeClassifier(random_state=random_seed)\ncls.fit(X_train, y_train)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree classifier on original data\nprint(X_train.shape, accuracy_score(y_test, cls.predict(X_test)), sep=': ')\n\n# Get weights for the instances\ninstance_weights = EvoWeighting(random_seed=random_seed).reweight(X_train, y_train)\n\n# Fit the decision tree model\ncls.fit(X_train, y_train, sample_weight=instance_weights)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree classifier on original data\nprint(X_train.shape, accuracy_score(y_test, cls.predict(X_test)), sep=': ')\n```\n\n## Feature selection\n\n### Simple feature selection example\n\n```python\nfrom sklearn.datasets import load_breast_cancer\nfrom evopreprocess.feature_selection import EvoFeatureSelection\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Print the size of dataset\nprint(dataset.data.shape)\n\n# Run feature selection with EvoFeatureSelection\nX_new = EvoFeatureSelection().fit_transform(\n dataset.data,\n dataset.target)\n\n# Print the size of dataset after feature selection\nprint(X_new.shape)\n```\n\n### Feature selection for regression with custom nature-inspired algorithm and other custom settings\n\n```python\nfrom sklearn.datasets import load_boston\nfrom sklearn.tree import DecisionTreeRegressor\nimport niapy.algorithms.basic as nia\nfrom evopreprocess.feature_selection import EvoFeatureSelection\n\n# Load regression data\ndataset = load_boston()\n\n# Print the size of dataset\nprint(dataset.data.shape)\n\n# Run feature selection with custom settings and regression with EvoFeatureSelection\nX_new = EvoFeatureSelection(\n evaluator=DecisionTreeRegressor(max_depth=2),\n optimizer=nia.DifferentialEvolution,\n random_seed=1,\n n_runs=5,\n n_folds=5,\n n_jobs=4\n).fit_transform(dataset.data, dataset.target)\n\n# Print the size of dataset after feature selection\nprint(X_new.shape)\n```\n\n### Feature selection with scikit-learn\n\n```python\nfrom sklearn.datasets import load_boston\nfrom sklearn.metrics import mean_squared_error\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.tree import DecisionTreeRegressor\nfrom evopreprocess.feature_selection import EvoFeatureSelection\n\n# Set the random seed for the reproducibility\nrandom_seed = 654\n\n# Load regression data\ndataset = load_boston()\n\n# Split the dataset to training and testing set\nX_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target,\n test_size=0.33,\n random_state=random_seed)\n\n# Train the decision tree model\nmodel = DecisionTreeRegressor(random_state=random_seed)\nmodel.fit(X_train, y_train)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree regressor on original data\nprint(X_train.shape, mean_squared_error(y_test, model.predict(X_test)), sep=': ')\n\n# Sample the data with random_seed set\nevo = EvoFeatureSelection(evaluator=model, random_seed=random_seed)\nX_train_new = evo.fit_transform(X_train, y_train)\n\n# Fit the decision tree model\nmodel.fit(X_train_new, y_train)\n\n# Keep only selected feature on test set\nX_test_new = evo.transform(X_test)\n\n# Print the results: shape of the original dataset and the MSE of decision tree regressor on original data\nprint(X_train_new.shape, mean_squared_error(y_test, model.predict(X_test_new)), sep=': ')\n```\n\n## EvoPreprocess as a part of the pipeline (from imbalanced-learn)\n\n```python\nfrom imblearn.pipeline import Pipeline\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.tree import DecisionTreeClassifier\nfrom evopreprocess.data_sampling import EvoSampling\nfrom evopreprocess.feature_selection import EvoFeatureSelection\n\n# Set the random seed for the reproducibility\nrandom_seed = 1111\n\n# Load classification data\ndataset = load_breast_cancer()\n\n# Split the dataset to training and testing set\nX_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target,\n test_size=0.33,\n random_state=random_seed)\n\n# Train the decision tree model\ncls = DecisionTreeClassifier(random_state=random_seed)\ncls.fit(X_train, y_train)\n\n# Print the results: shape of the original dataset and the accuracy of decision tree classifier on original data\nprint(X_train.shape, accuracy_score(y_test, cls.predict(X_test)), sep=': ')\n\n# Make scikit-learn pipeline with feature selection and data sampling\npipeline = Pipeline(steps=[\n ('feature_selection', EvoFeatureSelection(n_folds=10, random_seed=random_seed)),\n ('data_sampling', EvoSampling(n_folds=10, random_seed=random_seed)),\n ('classifier', DecisionTreeClassifier(random_state=random_seed))])\n\n# Fit the pipeline\npipeline.fit(X_train, y_train)\n\n# Print the results: the accuracy of the pipeline\nprint(accuracy_score(y_test, pipeline.predict(X_test)))\n```\n\nFor more examples please look at **Examples** folder.\n\n# Author\n\nEvoPreprocess was programmed and is maintained by Saso Karakatic from University of Maribor.\n\n# Citing\n\n## Plain format\n```\nKarakatic, S., (2020).\nEvoPreprocess - Data Preprocessing Framework with Nature-Inspired Optimization Algorithms.\nMathematics, 8(6), p.900. \n```\n\n## Bibtex format\n```\n@article{karakativc2020evopreprocess,\n title={EvoPreprocess\u2014Data Preprocessing Framework with Nature-Inspired Optimization Algorithms},\n author={Karakati{\\v{c}}, Sa{\\v{s}}o},\n journal={Mathematics},\n volume={8},\n number={6},\n pages={900},\n year={2020},\n publisher={Multidisciplinary Digital Publishing Institute}\n}\n```\n\n## License\n\nThis project is licensed under the GNU General Public License v3.0 License - see .\n\n\n", "description_content_type": "text/markdown", "docs_url": null, "download_url": "", "downloads": { "last_day": -1, "last_month": -1, "last_week": -1 }, "home_page": "https://github.com/karakatic/EvoPreprocess", "keywords": "Evolutionary Algorithms,Nature Inspired Algorithms,Data Sampling,Instance Weighting,Feature Selection,Preprocessing,Machine Learning", "license": "GPLv3", "maintainer": "", "maintainer_email": "", "name": "evopreprocess", "package_url": "https://pypi.org/project/evopreprocess/", "platform": "", "project_url": "https://pypi.org/project/evopreprocess/", "project_urls": { "Homepage": "https://github.com/karakatic/EvoPreprocess" }, "release_url": "https://pypi.org/project/evopreprocess/0.4.6/", "requires_dist": [ "numpy", "scipy", "scikit-learn", "imbalanced-learn", "NiaPy (>=2.0.0)" ], "requires_python": "", "summary": "Data Preprocessing with Evolutionary and Nature Inspired Algorithms.", "version": "0.4.6", "yanked": false, "yanked_reason": null }, "last_serial": 12519076, "releases": { "0.1.1": [ { "comment_text": "", "digests": { "md5": "7802721b03cdf33f1945b864325cf14b", "sha256": "9adbd869a650a4cb76012ae101be46866848df40a38f5cd832ae4d1af69797aa" }, "downloads": -1, "filename": "EvoPreprocess-0.1.1-py3-none-any.whl", "has_sig": false, "md5_digest": "7802721b03cdf33f1945b864325cf14b", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 17013, "upload_time": "2019-07-18T13:17:50", "upload_time_iso_8601": "2019-07-18T13:17:50.503187Z", "url": "https://files.pythonhosted.org/packages/a6/be/0bc71a0eb01189309b1f8a192ba680b1901fa08ada093d2fac3607a8d9e5/EvoPreprocess-0.1.1-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "4702a64f92ddb5b16d8cef6be41eaddd", "sha256": "e5e187089c5f4193dfab3dbabcc6229ef80b9bde572e96e2fd91cfd4686b97a4" }, "downloads": -1, "filename": "EvoPreprocess-0.1.1.tar.gz", "has_sig": false, "md5_digest": "4702a64f92ddb5b16d8cef6be41eaddd", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9155, "upload_time": "2019-07-18T13:17:58", "upload_time_iso_8601": "2019-07-18T13:17:58.708379Z", "url": "https://files.pythonhosted.org/packages/ad/37/5e85c4a95c1d030b51e62ddcbc5c1e7d290075cc5fdebea7cad049e5f248/EvoPreprocess-0.1.1.tar.gz", "yanked": false, "yanked_reason": null } ], "0.1.2": [ { "comment_text": "", "digests": { "md5": "414357b6dbc5087ade85aa75e64542ca", "sha256": "45d0406fb6627cabb743c1306736be9117779733e5569d939fc2f0627e5156e0" }, "downloads": -1, "filename": "EvoPreprocess-0.1.2-py3-none-any.whl", "has_sig": false, "md5_digest": "414357b6dbc5087ade85aa75e64542ca", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 17013, "upload_time": "2019-07-18T13:17:53", "upload_time_iso_8601": "2019-07-18T13:17:53.222192Z", "url": "https://files.pythonhosted.org/packages/d7/25/33b0ceb995cd69b632da47a12714766e8e02d0fd74f4842596253cd6de9c/EvoPreprocess-0.1.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "fb2d62965cc07f25d627c96066d1de20", "sha256": "89893be5c18bf2d1131b4705bb6703e99dec883fcaffd92f7b1b8e82fbf2ee79" }, "downloads": -1, "filename": "EvoPreprocess-0.1.2.tar.gz", "has_sig": false, "md5_digest": "fb2d62965cc07f25d627c96066d1de20", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9154, "upload_time": "2019-07-18T13:18:00", "upload_time_iso_8601": "2019-07-18T13:18:00.491597Z", "url": "https://files.pythonhosted.org/packages/e7/d5/f3844ed31e09228b54c9ab8d66860ff17b20c9eda36f0b646f64f2134746/EvoPreprocess-0.1.2.tar.gz", "yanked": false, "yanked_reason": null } ], "0.1.3": [ { "comment_text": "", "digests": { "md5": "a32765c3cc6de549651c7e4e5a286cd2", "sha256": "12891df5ccfdfabeb3aeed645f1547be7338d9ce9a90f5a5ea3644971c9b068b" }, "downloads": -1, "filename": "EvoPreprocess-0.1.3-py3-none-any.whl", "has_sig": false, "md5_digest": "a32765c3cc6de549651c7e4e5a286cd2", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 17015, "upload_time": "2019-07-18T13:17:55", "upload_time_iso_8601": "2019-07-18T13:17:55.077864Z", "url": "https://files.pythonhosted.org/packages/38/b2/ec27bbc49fb6d1619cf31add6ba3d0799323c62ecaa23527b1de1f6fd146/EvoPreprocess-0.1.3-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "2f8d85d445e9f56ff774412a2d73b222", "sha256": "853467d3ca4aa6738614a29b8848d73f53b78ce729ad24e754583683a1a75dc6" }, "downloads": -1, "filename": "EvoPreprocess-0.1.3.tar.gz", "has_sig": false, "md5_digest": "2f8d85d445e9f56ff774412a2d73b222", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9151, "upload_time": "2019-07-18T13:18:02", "upload_time_iso_8601": "2019-07-18T13:18:02.467481Z", "url": "https://files.pythonhosted.org/packages/e5/1a/dd26cc896c32ad06e5f20577ce237aae7f405bdb9ba2ce4b95aaf9cee3bd/EvoPreprocess-0.1.3.tar.gz", "yanked": false, "yanked_reason": null } ], "0.1.4": [ { "comment_text": "", "digests": { "md5": "8b04853284ceeffdd6342499c4c05b79", "sha256": "72a5124f76beb7cc1707b8fa861aa92cc74801818f94cf96239b2659d7262af6" }, "downloads": -1, "filename": "EvoPreprocess-0.1.4-py3-none-any.whl", "has_sig": false, "md5_digest": "8b04853284ceeffdd6342499c4c05b79", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 17006, "upload_time": "2019-07-18T13:17:56", "upload_time_iso_8601": "2019-07-18T13:17:56.900085Z", "url": "https://files.pythonhosted.org/packages/4c/db/0e12da16148a1efc43ee2d17b0e30430d81d25437e329d6bc34fd7949984/EvoPreprocess-0.1.4-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "a4f14be5cca15504f493609f49bda954", "sha256": "eccdff989d78df7bd3603a7122a7f3dd100d89859b1768051b277c3fe73cf32f" }, "downloads": -1, "filename": "EvoPreprocess-0.1.4.tar.gz", "has_sig": false, "md5_digest": "a4f14be5cca15504f493609f49bda954", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9154, "upload_time": "2019-07-18T13:18:04", "upload_time_iso_8601": "2019-07-18T13:18:04.361336Z", "url": "https://files.pythonhosted.org/packages/21/f2/b9abb9e3caadc15b461241ffe147eefcee0f79132905cd6d08574f4ec649/EvoPreprocess-0.1.4.tar.gz", "yanked": false, "yanked_reason": null } ], "0.2.0": [ { "comment_text": "", "digests": { "md5": "37bc95d1b93bdd4ac6aec3e390e18531", "sha256": "84ff4ffb43861c11c583611f8c2b3a6dab806989106cafdf4464c7fddec67480" }, "downloads": -1, "filename": "EvoPreprocess-0.2.0-py3-none-any.whl", "has_sig": false, "md5_digest": "37bc95d1b93bdd4ac6aec3e390e18531", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 29842, "upload_time": "2019-10-30T11:56:27", "upload_time_iso_8601": "2019-10-30T11:56:27.801212Z", "url": "https://files.pythonhosted.org/packages/4e/f4/46a0631bb40e309954bb2ea8e370a9a16e5c257eafb5716856ba52044f02/EvoPreprocess-0.2.0-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "167c5ef665c609a9fe987f89e6c41a13", "sha256": "f563967c3597e4b4e20df09250428a35da037a3aa52ab83859a2d1699d3e32f7" }, "downloads": -1, "filename": "EvoPreprocess-0.2.0.tar.gz", "has_sig": false, "md5_digest": "167c5ef665c609a9fe987f89e6c41a13", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9308, "upload_time": "2019-10-30T11:56:33", "upload_time_iso_8601": "2019-10-30T11:56:33.901108Z", "url": "https://files.pythonhosted.org/packages/0b/22/9c4f182b8c54fe94383bcdeafcc159f8fc6176abce7cf49edc0077a67bda/EvoPreprocess-0.2.0.tar.gz", "yanked": false, "yanked_reason": null } ], "0.3.0": [ { "comment_text": "", "digests": { "md5": "744b27094be56ec7c6c11bba5144564a", "sha256": "50a48e290796010e0045d7e6f3274c6f0ce511213d409f5a9e2f4fa63e60a646" }, "downloads": -1, "filename": "EvoPreprocess-0.3.0-py3-none-any.whl", "has_sig": false, "md5_digest": "744b27094be56ec7c6c11bba5144564a", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31402, "upload_time": "2020-04-29T13:54:20", "upload_time_iso_8601": "2020-04-29T13:54:20.902295Z", "url": "https://files.pythonhosted.org/packages/94/09/f1db026c1423d2cf2ec76fbb91159d675288de00719cc53095d5fb623145/EvoPreprocess-0.3.0-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "1bbbf6ad4bca571eb66b08ce1f1ef4f0", "sha256": "aafdb34b88a356d3b7386ef25d35cb77d5cc171fe35a2602757f7d5563635dd7" }, "downloads": -1, "filename": "EvoPreprocess-0.3.0.tar.gz", "has_sig": false, "md5_digest": "1bbbf6ad4bca571eb66b08ce1f1ef4f0", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 9983, "upload_time": "2020-04-29T13:54:22", "upload_time_iso_8601": "2020-04-29T13:54:22.147661Z", "url": "https://files.pythonhosted.org/packages/e9/b1/b840789afcb24220afd72617402e8b30e26de1214704e87f8c3b38093afb/EvoPreprocess-0.3.0.tar.gz", "yanked": false, "yanked_reason": null } ], "0.3.1": [ { "comment_text": "", "digests": { "md5": "083c56be64fb0f86588b23bc19f4abf8", "sha256": "2abd4d64a5ff8bbef2b7abcac927cd46142754d790c2e9f09d356de4ba065968" }, "downloads": -1, "filename": "EvoPreprocess-0.3.1-py3-none-any.whl", "has_sig": false, "md5_digest": "083c56be64fb0f86588b23bc19f4abf8", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 30351, "upload_time": "2020-11-19T13:46:27", "upload_time_iso_8601": "2020-11-19T13:46:27.283959Z", "url": "https://files.pythonhosted.org/packages/82/4b/09d5bb318764a0c5818f1b644097508d0d18db8c5b3a33c0551f01495c12/EvoPreprocess-0.3.1-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "26d413fa83e1686971d08328009d6a0f", "sha256": "a8ac4f76a2ff7ef7bb36df49905d0080a1e550aefbc82afb77ae514158bc05bb" }, "downloads": -1, "filename": "EvoPreprocess-0.3.1.tar.gz", "has_sig": false, "md5_digest": "26d413fa83e1686971d08328009d6a0f", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 10119, "upload_time": "2020-11-19T13:46:28", "upload_time_iso_8601": "2020-11-19T13:46:28.611390Z", "url": "https://files.pythonhosted.org/packages/9b/aa/826bf307d0c0c1e434197194df08719987ce018fc6042e07cec35bbe928b/EvoPreprocess-0.3.1.tar.gz", "yanked": false, "yanked_reason": null } ], "0.3.2": [ { "comment_text": "", "digests": { "md5": "d89c6018c90512a4128a53edcab660af", "sha256": "68aa2b982a8d99f1bbe250a456fcad64756c7c9179f1498d497c459d616ca8bc" }, "downloads": -1, "filename": "EvoPreprocess-0.3.2-py3-none-any.whl", "has_sig": false, "md5_digest": "d89c6018c90512a4128a53edcab660af", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 30352, "upload_time": "2020-11-21T16:28:34", "upload_time_iso_8601": "2020-11-21T16:28:34.684620Z", "url": "https://files.pythonhosted.org/packages/b2/c5/a28b4c6f212b6059bff922a3bd548ddbee73eba39ba4a385b65102035f8d/EvoPreprocess-0.3.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "4b0aeb517e54a6ad983bddd1b6b47b89", "sha256": "2bce03e68aba523f7c02927ae932a2b0d27786f04808b460efe5fea0f01f5f4b" }, "downloads": -1, "filename": "EvoPreprocess-0.3.2.tar.gz", "has_sig": false, "md5_digest": "4b0aeb517e54a6ad983bddd1b6b47b89", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 10106, "upload_time": "2020-11-21T16:28:36", "upload_time_iso_8601": "2020-11-21T16:28:36.011731Z", "url": "https://files.pythonhosted.org/packages/84/33/6cbb456568b9a9fd9706b674f0b517288ce30fcc50209929d8002d787bf4/EvoPreprocess-0.3.2.tar.gz", "yanked": false, "yanked_reason": null } ], "0.3.4": [ { "comment_text": "", "digests": { "md5": "cbb6e7c4efc136f1f27e38e16d966d62", "sha256": "7cbdbaa489a65efa27eab695def1cfbde6092964991961941bee7ccb574a0416" }, "downloads": -1, "filename": "EvoPreprocess-0.3.4-py3-none-any.whl", "has_sig": false, "md5_digest": "cbb6e7c4efc136f1f27e38e16d966d62", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31507, "upload_time": "2021-01-04T14:07:36", "upload_time_iso_8601": "2021-01-04T14:07:36.265248Z", "url": "https://files.pythonhosted.org/packages/6c/76/0082ae7d5855c4adeb50a9fcd02e44f42843462bbf196700fb5a8e3b8d48/EvoPreprocess-0.3.4-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "2dc6337d4bc280c377716f4a96284c98", "sha256": "1f167e22f310e925d7ea82ad3b102eac5367736137bbb15aeced8c31504bb539" }, "downloads": -1, "filename": "EvoPreprocess-0.3.4.tar.gz", "has_sig": false, "md5_digest": "2dc6337d4bc280c377716f4a96284c98", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 10548, "upload_time": "2021-01-04T14:07:37", "upload_time_iso_8601": "2021-01-04T14:07:37.480062Z", "url": "https://files.pythonhosted.org/packages/59/a2/758cf2a0e8cbb1127dfff206a305f5973868f20594e7acf87ec123a45d9f/EvoPreprocess-0.3.4.tar.gz", "yanked": false, "yanked_reason": null } ], "0.4.1": [ { "comment_text": "", "digests": { "md5": "8e32642ea64f65e2d6a72fd816be7161", "sha256": "38c35d7cd99d20c56f15fc5f2bba5dc74604b05d29caf8712d38174acfddfcc3" }, "downloads": -1, "filename": "evopreprocess-0.4.1-py3-none-any.whl", "has_sig": false, "md5_digest": "8e32642ea64f65e2d6a72fd816be7161", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31593, "upload_time": "2021-06-01T12:36:41", "upload_time_iso_8601": "2021-06-01T12:36:41.541446Z", "url": "https://files.pythonhosted.org/packages/8d/d1/4a9a47b2ba04e019c11eba7888e9b2bd953d25a12396e0779d9894982eea/evopreprocess-0.4.1-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "d376860c53bf08edc3354ce598a93e64", "sha256": "8b75ae8f0e2195e7f1ff5ee5fa0d61a61014ef5ff29dbf91523c72516da3a6f3" }, "downloads": -1, "filename": "evopreprocess-0.4.1.tar.gz", "has_sig": false, "md5_digest": "d376860c53bf08edc3354ce598a93e64", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 12961, "upload_time": "2021-06-01T12:36:42", "upload_time_iso_8601": "2021-06-01T12:36:42.594314Z", "url": "https://files.pythonhosted.org/packages/58/13/d18fbce9f91e7e94e7b8c82f0afaf9379a7459f6990ffd82224aebd21e8e/evopreprocess-0.4.1.tar.gz", "yanked": false, "yanked_reason": null } ], "0.4.2": [ { "comment_text": "", "digests": { "md5": "e863a1677237140cd3def5cf5a7e68b1", "sha256": "a601db0386dbff419c06c8d35382a4d16108fa6545b22fa9ae0e4493d00707ed" }, "downloads": -1, "filename": "evopreprocess-0.4.2-py3-none-any.whl", "has_sig": false, "md5_digest": "e863a1677237140cd3def5cf5a7e68b1", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31315, "upload_time": "2021-07-15T09:54:00", "upload_time_iso_8601": "2021-07-15T09:54:00.906173Z", "url": "https://files.pythonhosted.org/packages/b6/d2/859527a685faab6108968d5bad2fa9ae1378dcdcdee68def97aabc35853e/evopreprocess-0.4.2-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "4f9c3170bc0c613d8fe0efd45774639a", "sha256": "b4e2f62f6114a147d66c02b570f4318bfddfb8b8da6c7d774ca0b318e7afacec" }, "downloads": -1, "filename": "evopreprocess-0.4.2.tar.gz", "has_sig": false, "md5_digest": "4f9c3170bc0c613d8fe0efd45774639a", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 12836, "upload_time": "2021-07-15T09:54:02", "upload_time_iso_8601": "2021-07-15T09:54:02.327246Z", "url": "https://files.pythonhosted.org/packages/a8/88/2984f5b123421942909fe33e8632634f07230c0329fbbf066030c13bca31/evopreprocess-0.4.2.tar.gz", "yanked": false, "yanked_reason": null } ], "0.4.3": [ { "comment_text": "", "digests": { "md5": "2726c4a53906a4e73ee30d647db60ae2", "sha256": "1ff9aad0cfe0e2c2f5f9a04e2d9773e0e5d95f04a9e31be18b4c0f599450eda4" }, "downloads": -1, "filename": "evopreprocess-0.4.3-py3-none-any.whl", "has_sig": false, "md5_digest": "2726c4a53906a4e73ee30d647db60ae2", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31327, "upload_time": "2021-10-30T07:28:05", "upload_time_iso_8601": "2021-10-30T07:28:05.762778Z", "url": "https://files.pythonhosted.org/packages/25/12/0479e2e21a8e2fbc40d387a9628f575c5c5747ea4126338f4588c42bc7fa/evopreprocess-0.4.3-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "e44646cf9bd32e3c86bc217f5574eadb", "sha256": "b404fa3b18980f6e493d40f82fb5185a96f3fe61ad761b00b7af1efc7210ace1" }, "downloads": -1, "filename": "evopreprocess-0.4.3.tar.gz", "has_sig": false, "md5_digest": "e44646cf9bd32e3c86bc217f5574eadb", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 12873, "upload_time": "2021-10-30T07:28:07", "upload_time_iso_8601": "2021-10-30T07:28:07.218043Z", "url": "https://files.pythonhosted.org/packages/b9/85/bce813e887c8d2bda714ffd02fd3bcbf8a3337d6ea4a98554b3ca9046650/evopreprocess-0.4.3.tar.gz", "yanked": false, "yanked_reason": null } ], "0.4.5": [ { "comment_text": "", "digests": { "md5": "c0584c2a7d9a0b967b800b90cf1c3fd0", "sha256": "3910c3545ee02979ba778dbacac817d4ad74bbab3abbfe84bde76838893d0832" }, "downloads": -1, "filename": "evopreprocess-0.4.5-py3-none-any.whl", "has_sig": false, "md5_digest": "c0584c2a7d9a0b967b800b90cf1c3fd0", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31325, "upload_time": "2022-01-08T13:01:16", "upload_time_iso_8601": "2022-01-08T13:01:16.330180Z", "url": "https://files.pythonhosted.org/packages/3e/cb/8da919f9f626ec5e0e353a30d6bef823b9e627133725b90b8b9a3c76bd75/evopreprocess-0.4.5-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "db350f4e0989747518cb78d02f9cb4b7", "sha256": "c5cc43e6d4d237cdbf767ea376fd117b97c14a2c6faa59af97f99ffd30bba713" }, "downloads": -1, "filename": "evopreprocess-0.4.5.tar.gz", "has_sig": false, "md5_digest": "db350f4e0989747518cb78d02f9cb4b7", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 12876, "upload_time": "2022-01-08T13:01:17", "upload_time_iso_8601": "2022-01-08T13:01:17.833731Z", "url": "https://files.pythonhosted.org/packages/1b/35/60fc8d0baeac83daccd935beedba6b705c4fa2eed3f57329d57c9a2a2062/evopreprocess-0.4.5.tar.gz", "yanked": false, "yanked_reason": null } ], "0.4.6": [ { "comment_text": "", "digests": { "md5": "91f925734c72117c374d6971b12a211b", "sha256": "4038a8cb89936e2edb94ccea0962eac7f2727e48f3c7736a189a1e71bd90485d" }, "downloads": -1, "filename": "evopreprocess-0.4.6-py3-none-any.whl", "has_sig": false, "md5_digest": "91f925734c72117c374d6971b12a211b", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31324, "upload_time": "2022-01-09T10:54:09", "upload_time_iso_8601": "2022-01-09T10:54:09.641354Z", "url": "https://files.pythonhosted.org/packages/06/c9/a42557b37fe65d136e0ff52677c4ef22c938b5975362978d1bdee9e5c2d2/evopreprocess-0.4.6-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "b53b603c111562c62cea4cc760d22925", "sha256": "99a610c54e8b5c69892d718a9e6b7f942c4fd7de04c32d1d133b99a66d2a5b0a" }, "downloads": -1, "filename": "evopreprocess-0.4.6.tar.gz", "has_sig": false, "md5_digest": "b53b603c111562c62cea4cc760d22925", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 25030, "upload_time": "2022-01-09T10:54:11", "upload_time_iso_8601": "2022-01-09T10:54:11.185367Z", "url": "https://files.pythonhosted.org/packages/15/4b/90384b2b3329a92030f47842ce670023290cf23555ba77fe9d0fae653233/evopreprocess-0.4.6.tar.gz", "yanked": false, "yanked_reason": null } ] }, "urls": [ { "comment_text": "", "digests": { "md5": "91f925734c72117c374d6971b12a211b", "sha256": "4038a8cb89936e2edb94ccea0962eac7f2727e48f3c7736a189a1e71bd90485d" }, "downloads": -1, "filename": "evopreprocess-0.4.6-py3-none-any.whl", "has_sig": false, "md5_digest": "91f925734c72117c374d6971b12a211b", "packagetype": "bdist_wheel", "python_version": "py3", "requires_python": null, "size": 31324, "upload_time": "2022-01-09T10:54:09", "upload_time_iso_8601": "2022-01-09T10:54:09.641354Z", "url": "https://files.pythonhosted.org/packages/06/c9/a42557b37fe65d136e0ff52677c4ef22c938b5975362978d1bdee9e5c2d2/evopreprocess-0.4.6-py3-none-any.whl", "yanked": false, "yanked_reason": null }, { "comment_text": "", "digests": { "md5": "b53b603c111562c62cea4cc760d22925", "sha256": "99a610c54e8b5c69892d718a9e6b7f942c4fd7de04c32d1d133b99a66d2a5b0a" }, "downloads": -1, "filename": "evopreprocess-0.4.6.tar.gz", "has_sig": false, "md5_digest": "b53b603c111562c62cea4cc760d22925", "packagetype": "sdist", "python_version": "source", "requires_python": null, "size": 25030, "upload_time": "2022-01-09T10:54:11", "upload_time_iso_8601": "2022-01-09T10:54:11.185367Z", "url": "https://files.pythonhosted.org/packages/15/4b/90384b2b3329a92030f47842ce670023290cf23555ba77fe9d0fae653233/evopreprocess-0.4.6.tar.gz", "yanked": false, "yanked_reason": null } ], "vulnerabilities": [] }