PKQMYhkvsobekpy/__init__.pyimport fire from hkvsobekpy.io.bui import __bui_class from hkvsobekpy.io.his import __his_class from hkvsobekpy.core.waterlevelstat import __waterlevelstat_class from hkvsobekpy.core.plausibility import __plausibility_class __doc__ = """package for water-statistics and plausibility checker using his- and bui-file""" __version__ = '1.2.5' # initiate class for .bui-files __bui = __bui_class() read_bui = __bui.read_bui write_bui = __bui.write_bui # initiate class for .his-files read_his = __his_class() # initiate class for waterlevelstats waterlevelstat = __waterlevelstat_class() # initiate class for plausibilitychecker plausibility = __plausibility_class() if __name__ == '__main__': fire.Fire()PKQMYhkvsobekpy/__main__.pyimport fire from hkvsobekpy.io.bui import __bui_class from hkvsobekpy.io.his import __his_class from hkvsobekpy.core.waterlevelstat import __waterlevelstat_class from hkvsobekpy.core.plausibility import __plausibility_class __doc__ = """package for water-statistics and plausibility checker using his- and bui-file""" __version__ = '1.2.5' # initiate class for .bui-files __bui = __bui_class() read_bui = __bui.read_bui write_bui = __bui.write_bui # initiate class for .his-files read_his = __his_class() # initiate class for waterlevelstats waterlevelstat = __waterlevelstat_class() # initiate class for plausibilitychecker plausibility = __plausibility_class() if __name__ == '__main__': fire.Fire()PKQMhkvsobekpy/core/__init__.pyPKQMDzDDhkvsobekpy/core/plausibility.pyimport os try: from pathlib import Path except: from pathlib2 import Path import argparse import sys import itertools import geopandas as gpd from datetime import datetime, timedelta import copy import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.dates import date2num import re from matplotlib.ticker import ScalarFormatter, FormatStrFormatter import numpy as np import pandas as pd from scipy import optimize import fire import warnings try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': from tqdm import tqdm_notebook as tqdm # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': from tqdm import tqdm # Terminal running IPython else: from tqdm import tqdm # Other type (?) except NameError: from tqdm import tqdm # Probably standard Python interpreter #for debugging within notebook try: from IPython.core.debugger import set_trace except: pass # for python 2/3 compatibility try: xrange except NameError: xrange = range try: get_ipython().magic('matplotlib inline') except: pass from hkvsobekpy.io.his import __his_class from hkvsobekpy.io.bui import __bui_class from hkvsobekpy.core.utils import * his_reader = __his_class() bui_reader = __bui_class() class __plausibility_class(object): def __init__(self): """ SobekResultaten class. Class met methodes om een .his bestand uit te lezen. WaterstandStatistiek class. Class met methodes om een GumbleFit te bepalen """ # initatie van lege immutable objects # zie: https://stackoverflow.com/a/22526544/2459096 # python2.7: obj = argparse.Namespace() # python3.x: obj = types.SimpleNamespace() # self.stats = argparse.Namespace() # self.stats.plotposities = argparse.Namespace() # self.stats.stap1 = argparse.Namespace() # self.stats.stap2 = argparse.Namespace() # self.stats.stap3 = argparse.Namespace() # self.stats.stap4 = argparse.Namespace() class __errors__(object): """ error class met verschillende foutmeldingen """ @staticmethod def gewogenGemiddeldeError(): raise ValueError('Kan gewogen gemiddelde niet bepalen. Vereiste is minimaal 2 punten aan de linker en rechterzijde van de gekozen T') def gebeurtenissenError(): raise ValueError('Meer gebeurtenissen dan N. Zorg ervoor dat je tijdreeks slechts 1 gebeurtenis per jaar heeft') def schrijfTabelError(): raise ValueError('Kan deze tabel alleen wegschrijven met T10,25,50,100 voor Gumbel en T10 voor gewogen gemiddelde') def prepare_bui_his(self, df_his, df_bui, bui_locations='auto', bui_locations_aantal=10): """ Prepare parameters from bui- and his-file for plotting purposes Parameters ---------- his_file : str name of his-file to query (e.g: 'reachseg', 'calcpnt', 'struc') location : str location to query in his-file parameter : str parameter to query in his-file his_folder : str path to folder containing the his_file df_bui : bui_locations : str or list welke bui_locations worden gebruikt om een selectie te maken in de bui-file, if 'bui_locations' is 'auto', dan worden de eerste x locations gebruikt (waar x = 'bui_locations_aantal') bui_locations_aantal : int aantal locations mee te nemen tijdens plotten wanneer 'auto' is opgegeven voor parameter 'bui_locations' (default: 10) Returns ------- df_his : pandas.DataFrame timeseries containing all available timesteps in his-file df_bui_sel : pandas.DataFrame timeseries containing selection of bui-file, aligning with his-file start_his : datetime first datetime step of his-file end_his : datetime last datetime step of his-file df_bui_std : float standard deviation of timeseries selection bui-file df_his_std : float standard deviation of timeseries his-hile """ start_his = df_his.index[0] end_his = df_his.index[-1] df_bui_sel = df_bui.loc[start_his-pd.DateOffset(1):end_his+pd.DateOffset(1)] if df_bui_sel.values.size == 0: raise ValueError(""" cannot slice bui-file, seems time-period does not align with his-file time-period his-file: {0} - {1} time-period bui-file: {2} - {3} """.format(df_his.index[0], df_his.index[-1], df_bui.index[0], df_bui.index[-1])) # # create dummy waarden voor df_bui_sel # for loc in df_bui_sel.columns: # df_bui_sel.loc[df_bui_sel[loc] == 0,loc] = df_bui_sel[loc].apply(lambda x: np.random.normal(0,1)) if bui_locations == 'auto': df_bui_sel = df_bui_sel.iloc[:, 0:bui_locations_aantal] if isinstance(bui_locations, list): df_bui_sel = df_bui_sel.loc[:, bui_locations] df_his_std = np.std(df_his.values) df_bui_std = np.std(df_bui_sel.values) if df_bui_std == 0.: df_bui_std = 0.5 if df_his_std == 0.: df_his_std = 0.5 return df_bui_sel, start_his, end_his, df_bui_std, df_his_std def plot_bui_his(self, df_his, df_bui_sel, start_his, end_his, df_bui_std, df_his_std, his_file, parameter, location, out_folder, savefigure, barthreshold=4, barwidth = 0.02, baroffset=0.01): if barthreshold > 3: barthreshold = 3 fig, ax1 = plt.subplots(figsize=(8,6)) ax2 = ax1.twinx() # AXIS 1 :: his-file ax1.plot(df_his.index, df_his.values,color='#BFD600',marker='o',lw=4,label=parameter) ax1.set_xlim(start_his,end_his) ax1.set_ylabel(parameter) ax1.tick_params(labelbottom='on',labeltop='off', labelright="off",labelleft='on') ax1.set_ylabel(parameter,rotation=90) ax1.set_yticks(np.linspace(ax1.get_ybound()[0]-(df_his_std), ax1.get_ybound()[1]+df_his_std, 5)) ax1.grid(True, axis='y') leg=ax1.legend(bbox_to_anchor=(0, 0.02),loc=3,prop={'size':10},ncol=5) leg.draw_frame(False) if len(df_bui_sel.columns) > barthreshold: # AXIS 2 :: bui-file, width=barwidth, Draw line-chart colors = [ cm.Blues(x) for x in np.linspace(0.2, 1.0, len(df_bui_sel.columns)) ] for y_arr, label, color in zip(df_bui_sel.values.T, df_bui_sel.columns, colors): ax2.plot(df_bui_sel.index, y_arr, label='P.{0} (mm)'.format(label), lw=1.5,color=color) ax2.fill_between(df_bui_sel.index, 0, y_arr, color=color,alpha=0.05) ax2_ylim = ax2.get_ylim()[::-1] bottom = max(max(0,ax2_ylim[0]),max(df_bui_std,ax2_ylim[1])) top = min(max(0,ax2_ylim[0]),max(df_bui_std,ax2_ylim[1])) ax2.set_ylim(top=top, bottom=bottom) ax2.set_xlim(start_his,end_his) ax2.tick_params(labelbottom='off',labeltop='on', labelright="on",labelleft='off') ax2.set_ylabel('Neerslag (mm)',rotation=90) ax2.set_yticks(np.linspace(0, ax2.get_ybound()[1]+df_bui_std, 5)) leg=ax2.legend(bbox_to_anchor=(1.52, 0.02),loc=4,prop={'size':10},ncol=1) leg.draw_frame(False) else: print('create a barchart for the bui-locations') x = date2num(df_bui_sel.index.to_pydatetime()) if len(df_bui_sel.columns) == 3: colors = [ cm.Blues(x) for x in np.linspace(0.25, 0.8, len(df_bui_sel.columns)) ] series0 = df_bui_sel.iloc[:,0].tolist() label0 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,0].name) series1 = df_bui_sel.iloc[:,1].tolist() label1 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,1].name) series2 = df_bui_sel.iloc[:,2].tolist() label2 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,2].name) w = barwidth offset = baroffset ax2.bar(x - offset, series0, width=w, align='center', label=label0, color=colors[0], alpha=0.70) ax2.bar(x, series1, width=w, align='center', label=label1 , color=colors[1], alpha=0.70) ax2.bar(x + offset, series2, width=w, align='center', label=label2 , color=colors[2], alpha=0.70) if len(df_bui_sel.columns) == 2: colors = [ cm.Blues(x) for x in np.linspace(0.35, 0.75, len(df_bui_sel.columns)) ] series0 = df_bui_sel.iloc[:,0].tolist() label0 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,0].name) series1 = df_bui_sel.iloc[:,1].tolist() label1 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,1].name) w = barwidth offset = baroffset ax2.bar(x - offset, series0, width=w, align='center', label=label0, color=colors[0], alpha=0.75) ax2.bar(x, series1, width=w, align='center', label=label1 , color=colors[1], alpha=0.75) if len(df_bui_sel.columns) == 1: colors = [ cm.Blues(x) for x in np.linspace(0.45, 0.55, len(df_bui_sel.columns)) ] series0 = df_bui_sel.iloc[:,0].tolist() label0 = 'P.{0} (mm)'.format(df_bui_sel.iloc[:,0].name) w = barwidth offset = baroffset ax2.bar(x, series0, width=w, align='center', label=label0 , color=colors[0]) ax2.xaxis_date() ax2.autoscale(tight=True ) ax2_ylim = ax2.get_ylim()[::-1] bottom = max(max(0,ax2_ylim[0]),max(df_bui_std,ax2_ylim[1])) top = min(max(0,ax2_ylim[0]),max(df_bui_std,ax2_ylim[1])) ax2.set_ylim(top=top, bottom=bottom) ax2.set_xlim(start_his,end_his) ax2.tick_params(labelbottom='off',labeltop='on', labelright="on",labelleft='off') ax2.set_ylabel('Neerslag (mm)',rotation=90) ax2.set_yticks(np.linspace(0, ax2.get_ybound()[1]+df_bui_std, 5)) leg=ax2.legend(bbox_to_anchor=(0.95, 0.02),loc=4,prop={'size':10},ncol=1) leg.draw_frame(False) # fix zorder ax1.set_zorder(ax2.get_zorder()+1) # put ax1 in front of ax2 ax1.patch.set_visible(False) # hide the 'canvas' #ax2.patch.set_visible(False) # hide the 'canvas' plt.title('location: '+location) plt.tight_layout() if savefigure == False: plt.show() return else: his_file = "".join(re.findall("[A-Za-z0-9]", his_file)) location = "".join(re.findall("[A-Za-z0-9]", location)) parameter = "".join(re.findall("[A-Za-z0-9]", parameter)) path = os.path.join(out_folder,'{0}_{1}_{2}'.format(his_file,location,parameter)) #print(path) plt.savefig(path, dpi=100, bbox_inches='tight') plt.close(fig) return def table_bui_his(self, df_his, df_bui_sel, savetable=False, his_file='', his_parameter='', his_location='', out_folder=''): """ write table from combined his-file and bui-file Parameters ---------- df_his : pandas.DataFrame df_bui_sel : pandas.DataFrame his_file : str his_parameter : str his_location : str out_folder : str Returns ------- df_bui_his : pandas.DataFrame """ # include new index level on column df_bui_sel = pd.concat([df_bui_sel], keys=['Precipitation (mm)'], names=['parameter'], axis=1) # add column description df_bui_sel.columns.levels[1].name='location' # reorder levels of bui-file df_bui_sel = df_bui_sel.reorder_levels(['location','parameter'], axis=1) # concatenate both dataframes df_bui_his = pd.concat((df_his,df_bui_sel), axis=1, join='outer') # save to csv if savetable==True: his_file = "".join(re.findall("[A-Za-z0-9]", his_file)) his_location = "".join(re.findall("[A-Za-z0-9]", his_location)) his_parameter = "".join(re.findall("[A-Za-z0-9]", his_parameter)) path = os.path.join(out_folder,'{0}_{1}_{2}.csv'.format(his_file,his_location,his_parameter)) #print(path) df_bui_his.to_csv(path, encoding='windows-1252') return else: return df_bui_his def EnsembleRunner(self, shp_file, bui_file, his_folder, out_folder, shp_hiskey, shp_locationkey, shp_parameterkey, savefigure=True, bui_locations='auto', bui_locations_aantal=10, savetable=True, normalize_by_unicode=True, include_simularity=True, sequence_simularity=0.82, threshold_bar=3, barwidth = 0.02, baroffset=0.01): """ Combine timeseries of his files and bui locations using a dbf/shp file containing information about the mapping. Prepares figures and tables in batch function. Parameters ---------- shp_file : str path to dbf/shp file containing three columns to query his-file and location and parameter bui_file : str path to .bui file, containing a single precipitation event for 1 or more locations his_folder : str path to folder containing the his_file out_folder : str path to folder where to store output deriviates shp_hiskey : str his column key in shp/dbf file (contains name of his-file to query (e.g: 'reachseg', 'calcpnt', 'struc')) shp_locationkey : str location column key in shp/dbf file shp_parameterkey : str parameter column key in shp/dbf file savefigure : boolean options to exlude or include export of figures bui_locations : str or list welke bui_locations worden gebruikt om een selectie te maken in de bui-file, if 'bui_locations' is 'auto', dan worden de eerste x locations gebruikt (waar x = 'bui_locations_aantal') bui_locations_aantal : int aantal locations mee te nemen tijdens plotten wanneer 'auto' is opgegeven voor parameter 'bui_locations' (default: 10) savetable : boolean options to exlude or include export of table (csv format) normalize_by_unicode : boolean (default: True) inlcude this option to include NFKD unicode compatibility decomposition. see: http://unicode.org/reports/tr15/ include_simluratiy : boolean (default: True) include this option to include Ratcliff/Obershelp pattern recognition sequence_simularity : float (default 0.82) number between 0.0 and 1.0, function as threshold, where only a simularity above this value is mapped Returns ------- None. Figures and tables are prepared in the out_folder """ print('start ensemble runner') gdf = gpd.read_file(shp_file) print('read shp-file') df_bui = bui_reader.read_bui(bui_file) print('read bui-file') progress_bar = tqdm(gdf.T.columns.tolist()) for idx in progress_bar: row = gdf.iloc[idx,:] progress_bar.set_description("location %s" % row[shp_locationkey].ljust(20)) his_file = row[shp_hiskey] location = row[shp_locationkey] parameter = row[shp_parameterkey] # read his-file df_his, parameter = his_reader.read_series(his_file, location, parameter, his_folder, normalize_by_unicode, include_simularity, sequence_simularity, return_matching_parameter=True) # prepare files for plotting df_bui_sel, start_his, end_his, df_bui_std, df_his_std = self.prepare_bui_his( df_his, df_bui, bui_locations=bui_locations, bui_locations_aantal=bui_locations_aantal) # plot the figure self.plot_bui_his(df_his, df_bui_sel, start_his, end_his, df_bui_std, df_his_std, his_file, parameter, location, out_folder, savefigure) # save the data tables self.table_bui_his(df_his, df_bui_sel, savetable=savetable, his_file=his_file, his_parameter=parameter, his_location=location, out_folder=out_folder) return (print('done')) PKQMb((hkvsobekpy/core/utils.pyfrom difflib import SequenceMatcher import unicodedata def similar(a, b): return SequenceMatcher(None, a, b).ratio() def normalize_caseless(text): return unicodedata.normalize("NFKD", text.casefold()) def caseless_equal(left, right): return normalize_caseless(left) == normalize_caseless(right) def compare_df_column_his_list(df, df_column_key, his_parameters, normalize_by_unicode=True, include_simularity=False, sequence_simularity=0.82): """ function to apply unicode normalization and similarity checking for two list of columns Parameters ---------- df : geopandas.GeoDataFrame dataframe containing the input columns, normally is the source a shp or dbf file df_column_key : str name of column for usage as key his_parameters : list list of strings of locations/parameters of his-file to compare against the column in the geodataframe normalize_by_unicode : boolean inlcude this option to include NFKD unicode compatibility decomposition. see: http://unicode.org/reports/tr15/ include_simluratiy : boolean include this option to include Ratcliff/Obershelp pattern recognition sequence_simularity : float number between 0.0 and 1.0, function as threshold, where only a simularity above this value is mapped Returns df : geopandas.GeoDataFrame dataframe where column matching the column key is updated with matching values """ for df_idx, df_parameter in enumerate(df[df_column_key]): for his_parameter in his_parameters: # option to have only a unicode normalization if normalize_by_unicode == True and include_simularity == False: if caseless_equal(his_parameter, df_parameter) == True: df.loc[df_idx, df_column_key] = his_parameter print('{0} changed into {1}'.format( df_parameter, his_parameter)) # option to apply only parameter similarity functionality if include_simularity == True and normalize_by_unicode == False: smty = similar(his_parameter, df_parameter) # print(smty) if sequence_simularity <= smty < 1.0: df.loc[df_idx, df_column_key] = his_parameter print('{0} changed into {1}'.format( df_parameter, his_parameter)) # option to apply both unicode normalization and similarity functionality if include_simularity == True and normalize_by_unicode == True: # first check unicode normalization if caseless_equal(his_parameter, df_parameter) == True: df.loc[df_idx, df_column_key] = his_parameter print('{0} changed into {1}'.format( df_parameter, his_parameter)) # if not succeed try similarity else: smty = similar(normalize_caseless(his_parameter), normalize_caseless(df_parameter)) #print(smty) if sequence_simularity <= smty < 1.0: df.loc[df_idx, df_column_key] = his_parameter print('{0} changed into {1}'.format( df_parameter, his_parameter)) return df def compare_df_parameter_his_parameter(df_parameter, his_parameters, normalize_by_unicode=True, include_simularity=False, sequence_simularity=0.82): """ function to apply unicode normalization and similarity checking for two list of columns Parameters ---------- df_parameter : str string of locations/parameter from a dbf of shp file his_parameters : list list of strings of locations/parameters of his-file to compare against the df value normalize_by_unicode : boolean inlcude this option to include NFKD unicode compatibility decomposition. see: http://unicode.org/reports/tr15/ include_simluratiy : boolean include this option to include Ratcliff/Obershelp pattern recognition sequence_simularity : float number between 0.0 and 1.0, function as threshold, where only a simularity above this value is mapped Returns df_parameter : str df parameter updated with matching values of his parmater/location if any """ for his_parameter in his_parameters: if normalize_by_unicode == True and include_simularity == False: if caseless_equal(his_parameter, df_parameter) == True: print('Normalized unicode {0} matches {1}'.format( df_parameter, his_parameter)) df_parameter = his_parameter # option to apply only parameter similarity functionality if include_simularity == True and normalize_by_unicode == False: smty = similar(his_parameter, df_parameter) # print(smty) if sequence_simularity <= smty < 1.0: print('{0} changed into {1}, since similarity is {2}'.format( df_parameter, his_parameter, round(smty,2))) df_parameter = his_parameter # option to apply both unicode normalization and similarity functionality if include_simularity == True and normalize_by_unicode == True: # first check unicode normalization if caseless_equal(his_parameter, df_parameter) == True: print('Normalized unicode {0} matches {1}'.format( df_parameter, his_parameter)) df_parameter = his_parameter # if not succeed try similarity else: smty = similar(normalize_caseless(his_parameter), normalize_caseless(df_parameter)) #print(smty) if sequence_simularity <= smty < 1.0: print('{0} changed into {1}, since similarity is {2}'.format( df_parameter, his_parameter, round(smty,2))) df_parameter = his_parameter return df_parameter PKQMoT((!hkvsobekpy/core/waterlevelstat.pyimport os try: from pathlib import Path except: from pathlib2 import Path import types import argparse import sys import itertools import geopandas as gpd from datetime import datetime, timedelta import copy import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter, FormatStrFormatter import numpy as np import pandas as pd from scipy import optimize import fire import warnings try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': from tqdm import tqdm_notebook as tqdm # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': from tqdm import tqdm # Terminal running IPython else: from tqdm import tqdm # Other type (?) except NameError: from tqdm import tqdm # Probably standard Python interpreter #for debugging within notebook try: from IPython.core.debugger import set_trace except: pass # for python 2/3 compatibility try: xrange except NameError: xrange = range try: get_ipython().magic('matplotlib inline') except: pass from hkvsobekpy.io.his import __his_class his_reader = __his_class() class __waterlevelstat_class(object): def __init__(self): """ SobekResultaten class. Class met methodes om een .his bestand uit te lezen. WaterstandStatistiek class. Class met methodes om een GumbleFit te bepalen """ # initatie van lege immutable objects # zie: https://stackoverflow.com/a/22526544/2459096 # python2.7: obj = argparse.Namespace() # python3.x: obj = types.SimpleNamespace() def _initNamespaces(self): try: self.stats = types.SimpleNamespace() self.stats.plotposities = types.SimpleNamespace() self.stats.stap1 = types.SimpleNamespace() self.stats.stap2 = types.SimpleNamespace() self.stats.stap3 = types.SimpleNamespace() self.stats.stap4 = types.SimpleNamespace() except Exception as e: print(e) self.stats = argparse.Namespace() self.stats.plotposities = argparse.Namespace() self.stats.stap1 = argparse.Namespace() self.stats.stap2 = argparse.Namespace() self.stats.stap3 = argparse.Namespace() self.stats.stap4 = argparse.Namespace() return self class __errors__(object): """ error class met verschillende foutmeldingen """ @staticmethod def gewogenGemiddeldeError(): raise ValueError('Kan gewogen gemiddelde niet bepalen. Vereiste is minimaal 2 punten aan de linker en rechterzijde van de gekozen T') def gebeurtenissenError(): raise ValueError('Meer gebeurtenissen dan N. Zorg ervoor dat je tijdreeks slechts 1 gebeurtenis per jaar heeft') def schrijfTabelError(): raise ValueError('Kan deze tabel alleen wegschrijven met T10,25,50,100 voor Gumbel en T10 voor gewogen gemiddelde') def _best_fit_slope_and_intercept(self,xs,ys): try: warnings.filterwarnings("error") m = (((xs.mean()*ys.mean()) - (xs*ys).mean()) / ((xs.mean()*xs.mean()) - (xs*xs).mean())) except RuntimeWarning: #set_trace() m = 0#np.nan b= ys.mean() - m*xs.mean() return m, b def _squared_error(self,ys_orig,ys_line): return sum((ys_line - ys_orig) * (ys_line - ys_orig)) def _coefficient_of_determination(self,ys_orig,ys_line): y_mean_line = [ys_orig.mean() for y in ys_orig] squared_error_regr = self._squared_error(ys_orig, ys_line) squared_error_y_mean = self._squared_error(ys_orig, y_mean_line) try: warnings.filterwarnings("error") _r_squared = 1 - (squared_error_regr/squared_error_y_mean) except RuntimeWarning: _r_squared = 'undefined' return _r_squared def _r_squared(self,xs,ys): """ Bepaalt de r**2 waarde op basis van twee input arrays Parameters ---------- xs : numpy.array array met orginele waarden ys : numpy.array array met afgeleide waarden Returns ------- r_squared : float de afgeleide r**2 waarde """ m, b = self._best_fit_slope_and_intercept(xs,ys) regression_line = [(m*x)+b for x in xs] r_squared = self._coefficient_of_determination(ys,regression_line) return r_squared def _igumbelFunc(self, arr, Td, t): """ Gumbel Functie Parameters ---------- arr : numpy.array array met gesorteerde waterstanden Td : Returns ------- gumbelFuncFunc : numpy.array Gumbel Functie """ a,d = arr self.stats.plotposities.gumbelFunc = (float(-1.0)* float(a)*np.log(1.0/t * float(Td))+float(d)) return self.stats.plotposities.gumbelFunc def _igumbelFuncFit(self, arr, h, Td, t): """ Gumbel Functie Parameters ---------- arr : numpy.array array met gesorteerde waterstanden h : int/float Td : int/float T : int/float Returns ------- gumbelFuncFit : numpy.array Fitted Gumbel Functie """ a,d = arr self.stats.plotposities.gumbelFuncFit = h-(float(-1.0)* float(a)*np.log(1.0/t * float(Td))+float(d)) return self.stats.plotposities.gumbelFuncFit def _gewogenGemiddelde4TOI(self, Tarray, WSarray, TOI): """ Functie om het gewogen gemiddelde te krijgen op basis van de vier dichtsbijzijnde waarden rondom de T of interest Parameters ---------- Tarray : numpy.array Array met de terugkeertijden, WSarray : numpy.array Array met de parameterwaarden, bijvoorbeeld waterstanden TOI : int Waarde met de terugkeertijd of interest, bijvoorbeeld 10 voor T=10 Returns ------- """ # get the index of the closest value to T10 on its left side, # T is sorted in descending order so reverse array first to get ascending order cl = self._find_closest(Tarray[::-1], TOI) # get the indices of the four closest points # [..] * * * * | * * [..] # cl-2 cl-1 cl T10 cl+1 cl+2 # ---- -- ---- ---- try: indices = np.array([cl-1,cl,cl+1,cl+2]) WSarray_sel = np.take(WSarray[::-1], indices) Tarray_sel = np.take(Tarray[::-1], indices) except: self.__errors__.gewogenGemiddeldeError() # inverse distance weighting weights = 1 / abs(Tarray_sel - TOI) weights /= weights.sum() # weight_cl-1 * ws_cl-1 + weight_cl * ws_cl + weight_cl+1 * ws_cl+1 + weight_cl+2 * ws_cl+2 WSarray_TOI = np.dot(weights, WSarray_sel) return WSarray_TOI, WSarray_sel, Tarray_sel def _find_closest(self, Tarray, TOI): # T must be sorted (in ascending order) idx = Tarray.searchsorted(TOI) idx = np.clip(idx, 1, len(Tarray)-1) left = Tarray[idx-1] right = Tarray[idx] idx -= TOI - left < right - TOI return idx def _calcFi_T(self, len_arr,N, Ggi=0.44, GgN=0.12): """ Bepaal plotpositie jaarmaximum als kans Parameters ---------- len_arr : int aantal gebeurtenissen N : int aantal jaren waarover de Gumble fit bepaald moet worden Ggi : float Gringgorten plotposities i (standaard: 0.44) GgN : float Gringgorten plotposities N (standaard: 0.12) Returns ------- T : np.array array van terugkeertijden Fijaar : np.array array van plotposities jaarmaxima Literature ---------- Voor bepaling Gringorten coefficienten zie bijv: http://glossary.ametsoc.org/wiki/Gringorten_plotting_position """ Fi = [] T = [] for i in range(len_arr): i += 1 f = float(1 - ((i - Ggi) / (N+GgN))) Fi.append(f) try: warnings.filterwarnings("error") Fijaar = (np.log(Fi) )* -1 except RuntimeWarning: #set_trace() pass T = 1 / (Fijaar) # set set self self.stats.plotposities.Fijaar = Fijaar self.stats.plotposities.T = T return self.stats.plotposities.T, self.stats.plotposities.Fijaar def PlotFiguur(self,stat_object,out_folder='none'): """ plot figuur Parameters ---------- ID : str locationnaam ## STEP1 Gumbel Fit voor T25,T50,T100 voor alle buien S1_vAmin : int venster array minimum S1_vAmax : int venster array maximum S1_T : ndarray Terugkeertijden van jaarmaxima gebeurtenissen genomen over gehele jaar S1_ws_srt : ndarray Waterstanden welke horen bij de terugkeertijden van jaarmaxima gebeurtenissen genomen over gehele jaar S1_GumbelT : ndarray Terugkeertijden welke horen bij de Gumbel fit (eg, 25,50,100) S1_GumbelWS : ndarray Waterstanden welke horen bij de terugkeertijden welke horen bij de Gumbel fit (eg, 25,50,100) S1_GumbelWS_line : ndarray Waterstanden welke horen bij de terugkeertijden welke horen bij de Gumbel fit vallend binnend het venster S1_r_squared : float r**2 tussen de Gumbel fit en gebeurtenenissed binnen je venster ## STEP2 Gumbel Fit voor T10 voor alleen zomerbuien S2_T : ndarray Terugkeertijden van jaarmaxima gebeurtenissen genomen over het groeiseizoen S2_ws_srt : ndarray Waterstanden welke horen bij de terugkeertijden van jaarmaxima gebeurtenissen genomen over het groeiseizoen ## STEP4 Gewogen gemiddelde voor T10 voor alleen de zomerbuien S4_Tarray_sel_jaar : ndarray Terugkeertijden van jaarmaxima gebeurtenissen genomen over het groeiseizoen welke meegenomen zijn voor bepaling gewogen gemiddeld S4_WSarray_sel_jaar : ndarray Waterstanden welke horen bij terugkeertijden van jaarmaxima gebeurtenissen welke meegenomen zijn voor bepaling gewogen gemiddeld TOI : int Terugkeertijd of interest voor bepaling van het gewogen gemiddelde (normaal gesproken 10) S4_WSarray_TOI_jaar : float Waterstand welke hoort bij de TOI Returns ------- Maakt figuur en slaat deze in de folder waar het script gerund wordt. """ ID = stat_object.stats.stap1.ID S1_vAmin = stat_object.stats.stap1.vAmin S1_vAmax = stat_object.stats.stap1.vAmax S1_T = stat_object.stats.stap1.T S1_ws_srt = stat_object.stats.stap1.ws_srt S1_GumbelT = stat_object.stats.stap1.GumbelT S1_GumbelWS = stat_object.stats.stap1.GumbelWS S1_GumbelWS_line = stat_object.stats.stap1.GumbelWS_line S1_r_squared = stat_object.stats.stap1.r_squared S2_T = stat_object.stats.stap2.T S2_ws_srt = stat_object.stats.stap2.ws_srt S3_Tarray_sel_jaar = stat_object.stats.stap3.Tarray_sel_jaar S3_WSarray_sel_jaar = stat_object.stats.stap3.WSarray_sel_jaar TOI3 = stat_object.stats.stap3.TOI S3_WSarray_TOI_jaar = stat_object.stats.stap3.WSarray_TOI_jaar S4_Tarray_sel_jaar = stat_object.stats.stap4.Tarray_sel_jaar S4_WSarray_sel_jaar = stat_object.stats.stap4.WSarray_sel_jaar TOI = stat_object.stats.stap4.TOI S4_WSarray_TOI_jaar = stat_object.stats.stap4.WSarray_TOI_jaar # Voor het figuur mag de TOI niet geplot worden in de gumbel fit. # Kijk of TOI binnen de GumbelT bestaan en verwijder dit punt als zo. if TOI in S1_GumbelT: idx = S1_GumbelT.index(TOI) S1_GumbelT = np.delete(S1_GumbelT, idx) S1_GumbelWS = np.delete(S1_GumbelWS, idx) fig=plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.set_xscale('log') # plot jaarmaxima gebeurtenissen over gehele jaar ## OPEN CIRKELS ax.plot(S1_T, S1_ws_srt, fillstyle='none', label='waterstanden (jaarmaxima)', color='#2E589F', linestyle='', marker='o', markeredgewidth=2, markersize=10, markerfacecoloralt='gray') # plot maxima gebeurtenissen over de zomerbuien ## DICHTE CIRKELS ax.plot(S2_T, S2_ws_srt, fillstyle='full', label='waterstanden (maxima groeiseizoen)', color='cornflowerblue', linestyle='', marker='o', markersize=8, markerfacecoloralt='gray', alpha=0.75) # plot gumble fit voor T25, T50, T100 in lijn en punt ax.plot(S1_T[S1_vAmin:S1_vAmax],S1_GumbelWS_line, '-', color='#3BBB75', label='Gumbel fit (venster)') ax.scatter(S1_GumbelT, S1_GumbelWS,s=100, marker='s', facecolors='#3BBB75', zorder=10,label='waterstand op T25, T50 en T100') # plot gewogen gemiddelde voor T10 op basis van geheel jaar in punt ax.scatter(TOI3, S3_WSarray_TOI_jaar,s=100, marker='s',facecolors='#FF5AC3', zorder=10,label='waterstand op T10 (stedelijk)') # geheel jaar # plot gewogen gemiddelde voor T10 op basis van geheel jaar in punt ## HALF-GEVULDE CIRKELS ax.plot(S3_Tarray_sel_jaar,S3_WSarray_sel_jaar, fillstyle='right', label='gebeurtenissen voor bepaling T'+str(TOI3)+' (stedelijk)', color='#865FC5', linestyle='none', marker='o', markersize=8, markerfacecoloralt='white') # plot gewogen gemiddelde voor T10 op basis van alleen zomerbuien in punt ax.scatter(TOI, S4_WSarray_TOI_jaar,s=100, marker='s',facecolors='#CE0002', zorder=10,label='waterstand op T10 (landelijk)') # zomerbuien # plot gewogen gemiddelde voor T10 op basis van zomerbuien in punt ## HALF-GEVULDE CIRKELS ax.plot(S4_Tarray_sel_jaar,S4_WSarray_sel_jaar, fillstyle='right', label='gebeurtenissen voor bepaling T'+str(TOI)+ ' (landelijk)', color='#F5AC1B', linestyle='none', marker='o', markersize=8, markerfacecoloralt='white') # plot r**2 rechtsbovenin if type(S1_r_squared) is str: label_r_squared = S1_r_squared else: label_r_squared = str(np.round(S1_r_squared,2)) ax.text(0.975, 0.975, '$r^2$: '+label_r_squared, horizontalalignment='right', verticalalignment='top', transform=ax.transAxes) # axes settings ax.set_xlim(1,300) Ymin = min(S1_ws_srt) - 0.05 Ymax = max(S1_ws_srt) + 0.25 ax.set_ylim(Ymin,Ymax) ax.set_ylabel('Waterstand (m+NAP)') ax.set_xlabel('Terugkeertijd (jaren)') ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) ax.grid(True,which='both', axis='both', linestyle='-', color= '0.75', zorder=0) # legend settings legend = plt.legend(loc='upper left',prop={'size':10}) legend.get_frame().set_facecolor('white') legend.get_frame().set_alpha(1) legend.get_frame().set_linewidth(1) legend.get_frame().set_edgecolor('#8B8B8B') # table settings col_labels=['Terugkeertijd','Waterstand (m+NAP)'] table_vals = pd.DataFrame([['T'+str(i) for i in S1_GumbelT],S1_GumbelWS.round(decimals=2).tolist()]).T.values.tolist() table_vals = [['T'+str(TOI)+' (landelijk)', str(round(S4_WSarray_TOI_jaar,2))]] + table_vals table_vals = [['T'+str(TOI3)+' (stedelijk)', str(round(S3_WSarray_TOI_jaar,2))]] + table_vals # the rectangle is where I want to place the table the_table = ax.table(cellText=table_vals, colWidths = [0.4]*2, colLabels=col_labels, loc='center right',bbox=[1.01, 0.0, 0.5, 0.5]) plt.title('location: '+ID) plt.tight_layout() if out_folder=='none': plt.show() else: out_folder_png = os.path.join(out_folder,'png') out_folder_png_file = os.path.join(out_folder_png, 'waterstandstatistiek_loc_'+ID+'.png') plt.savefig(out_folder_png_file, bbox_inches='tight', dpi=90, pad_inches=0.2) plt.clf() plt.close(fig) def _gewogenGemiddelde(self, df_enkel, N=109,TOI=10): """ """ # lengte van array van waterstanden Nws = df_enkel.size T, Fijaar = self._calcFi_T(Nws,N) # kijk eerst of de input dataframe een multi-column heeft en reduceerd indien ja try: df_enkel = df_enkel.iloc[:,0] except: pass if len(df_enkel.name) == 2: enkel_location = df_enkel.name[0] enkel_parameter = df_enkel.name[1] else: enkel_location = enkel_parameter = 'niet gedefinieerd' df_enkel_sorted = df_enkel.sort_values(ascending=False) # bepaal gewogen gemiddelde voor parameter waarde voor terugkeertijd of interest op basis van 4 dichtsbijzijnde waarden WSarray_TOI, WSarray_sel, Tarray_sel = self._gewogenGemiddelde4TOI(T, df_enkel_sorted.values, TOI) return WSarray_TOI, WSarray_sel, Tarray_sel def _enkeleGumbelFit(self, df_enkel, N, vensterArray=[0,9], GumbelT=[25,50,100.0], Ggi=0.44, GgN=0.12): """ TOI : int Terugkeertijd of interest N : int Pas op: de bepaling voor over hoeveel jaren het aantal plotposities berekend moet worden, moet gedaan worden op basis van het aantal mogelijke jaren in de gebeurtenissen reeks. Bepaal dit op een gebeurtenissenreeks alvorens een periode filter is toegepast. """ # lengte van array van waterstanden Nws = df_enkel.size if Nws > N: #set_trace() self.__errors__.gebeurtenissenError() T, Fijaar = self._calcFi_T(Nws, N, Ggi, GgN) # kijk eerst of de input dataframe een multi-column heeft en reduceerd indien ja try: df_enkel = df_enkel.iloc[:,0] except: pass if len(df_enkel.name) == 2: enkel_location = df_enkel.name[0] enkel_parameter = df_enkel.name[1] else: enkel_location = enkel_parameter = 'niet gedefinieerd' # get min/max van venster array vAmin = vensterArray[0] vAmax = vensterArray[1] df_enkel_sorted = df_enkel.sort_values(ascending=False) # bepaal de terugkeertijden waarden en afgeleiden op basis van venster array voor Gumbel fit dT = np.log(T[vAmin]) - np.log(T[vAmax]) dh = df_enkel_sorted.iloc[vAmin] - df_enkel_sorted.iloc[vAmax] dTpunt = -np.log(T[vAmax]) dhpunt = (dh/dT)*dTpunt a0 = [dh/dT, df_enkel_sorted.iloc[vAmax]+dhpunt] # apply de gumbel fit functie a_out, cov_x, infodict, msg, flag = optimize.leastsq(self._igumbelFuncFit, a0, args = (df_enkel_sorted.iloc[vAmin:vAmax], 1, T[vAmin:vAmax]), full_output=True) # a_out holds the paramters of the fitted line [a and b] a = a_out[0] b = a_out[1] # get the locations on the fit corresponding to the required return periods GumbelWS = self._igumbelFunc(a_out, 1, np.array(GumbelT)) # get the locations on the fit corresponding to the slice on all Ts using the vensterArray GumbelWS_lineVensterArray = self._igumbelFunc(a_out, 1, T[vAmin:vAmax]) #set_trace() xs = df_enkel_sorted.iloc[vAmin:vAmax] ys = GumbelWS_lineVensterArray r_squared = self._r_squared(xs,ys) # schrijf weg naar gumbel dataframe T_columns = ['T'+str(int(item)) for item in GumbelT] df_gumbel = pd.DataFrame(index=[enkel_location], columns=T_columns+['solution']) df_gumbel.index.name='location' df_gumbel.loc[enkel_location][T_columns] = GumbelWS if flag > 4: df_gumbel.loc[enkel_location]['solution'] = 'no solution' else: df_gumbel.loc[enkel_location]['solution'] = 'optimization succesful' return (vAmin,vAmax, df_enkel_sorted.values, T, GumbelT, GumbelWS, enkel_location, a,b, GumbelWS_lineVensterArray,r_squared), df_gumbel def AfleidingParameters(self, df_enkel, N, vensterArray, GumbelT, TOI, startMMdd=(1,1), endMMdd=(12,31), jaarmax_as='date', Ggi=0.44, GgN=0.12): """ """ self = self._initNamespaces() # STEP 1 Gumbel Fit voor geselecteerde T's [eg. T10,T25,T50,T100] voor alle buien S1_param4fig, S1_df_gumbel = self._enkeleGumbelFit(df_enkel, N=N, vensterArray=vensterArray, GumbelT=GumbelT,Ggi=Ggi,GgN=GgN) self.stats.stap1.vAmin = S1_param4fig[0] self.stats.stap1.vAmax = S1_param4fig[1] self.stats.stap1.ws_srt = S1_param4fig[2] self.stats.stap1.T = S1_param4fig[3] self.stats.stap1.GumbelT = S1_param4fig[4] self.stats.stap1.GumbelWS = S1_param4fig[5] self.stats.stap1.ID = S1_param4fig[6] self.stats.stap1.a = S1_param4fig[7] self.stats.stap1.b = S1_param4fig[8] self.stats.stap1.GumbelWS_line = S1_param4fig[9] self.stats.stap1.r_squared = S1_param4fig[10] # STEP 2 Gumbel Fit voor T10 voor alleen zomerbuien df_enkel_groei = his_reader.SelectPeriodeWaardenArray(df_enkel, startMMdd=startMMdd, endMMdd=endMMdd, jaarmax_as=jaarmax_as) S2_param4fig, S2_df_gumbel = self._enkeleGumbelFit(df_enkel_groei, N=N, GumbelT=[TOI], vensterArray = vensterArray,Ggi=Ggi,GgN=GgN) self.stats.stap2.ws_srt = S2_param4fig[2] self.stats.stap2.T = S2_param4fig[3] self.stats.stap2.GumbelT = S2_param4fig[4] self.stats.stap2.GumbelWS = S2_param4fig[5] self.stats.stap2.startMMdd = startMMdd self.stats.stap2.endMMdd = endMMdd # STEP 3 Gewogen gemiddelde voor T10 voor alle buien self.stats.stap3.WSarray_TOI_jaar, self.stats.stap3.WSarray_sel_jaar, self.stats.stap3.Tarray_sel_jaar = self._gewogenGemiddelde(df_enkel, N=N, TOI=TOI) self.stats.stap3.TOI = TOI self.stats.stap3.startMMdd = startMMdd self.stats.stap3.endMMdd = endMMdd # STEP 4 Gewogen gemiddelde voor T10 voor alleen de zomerbuien self.stats.stap4.WSarray_TOI_jaar, self.stats.stap4.WSarray_sel_jaar, self.stats.stap4.Tarray_sel_jaar = self._gewogenGemiddelde(df_enkel_groei, N=N, TOI=TOI) self.stats.stap4.TOI = TOI self.stats.stap4.startMMdd = startMMdd self.stats.stap4.endMMdd = endMMdd return self def EnsembleRunner(self, out_folder, his_file, shp_file, shp_key='nodeID', parameter='auto', startMMdd=(5,15), endMMdd=(10,15), vensterArray=[0,10], GumbelT=[10,25,50,100], TOI=10, draw_plot=True, write_table=True): """ Lees SOBEK weggeschreven variablene uit en schrijf de afgeleide waterstanden toebehorend aan gebruikers gedefineerde terugkeertijden naar zowel csv/dbf en png. Voor het afleiden van de waterstanden welke horen bij de verschillende terugkeertijden kan gebruik gemaakt worden van plotposities/Gumbel fit en een gewogen gemiddelde. Input ----- out_folder : path een folder waarin de csv en shp/dbf bestand worden weggeschreven. voor de figuren moet er ook een folder binnen de out_folder bestaan getiteld 'png' his_file : path absoluut pad naar een his-file welke ingelezen moet gaan worden shp_file : path absoluut pad naar een shp-file van waaruit de locations gelinkt moeten worden shp_key : str string met de naam van de kolom in de shp-file waarin de locations staan parameter : str naam van de parameter in het his-file welke gebruikt moet gaan worden. Default is 'auto'. In dit geval zal de eerste parameter gebruikt worden vanuit het his-file startMMdd : tuple Tuple in het formaat (maand,dag). Bepaling van de start datum van de periode. Genoemde datum is inclusief. Voorbeeld (5,15) staat voor maand 5, dag 15. endMMdd : tuple Tuple in het formaat (maand,dag). Bepaling van de eind datum van de periode. Genoemde datum is inclusief. Voorbeeld (10,15) staat voor maand 10, dag 15. vensterArray : array het venster welke gebruikt wordt als filter om de gebeurtenissen mee te nemen voor de bepaling van de Gumbel fit. Het venster is een array van twee waarden, vaak wordt [0,10] gekozen, waar 0 overeenkomt met de meest extreme waarde en 10 de op 10 na meest extreme waarde. In ander woorden, in dit geval is het venster de 10 meest extreme waarden. GumbelT : array een array met terugkeertijden welke meegenomen moet worden als locations waarover een de waterstand moet bepaald worden aan de hand van de Gumbel fit. Een vaak gebruikte array is [10,25,50,100] wat overeenkomt met de T10, T25, T50 en T100 TOI : int Waarde met de terugkeertijd of interest voor het bepalen van het gewogen gemiddelde. Dit wordt gebruikt voor een terugkeertijd welke tenminste 2 gebeurtenissen en 2 gebeurtenissen na zicht heeft. Gewoonlijk kan dit gebruikt worden voor het bepalen van de T10, welke soms nog in de 'knik' ligt. draw_plot : boolean Aangeven of je de figuren ook wilt wegschrijven naar png's. Indien zo, moet er een 'png' folder bestaan binnen de out_folder. Voor het figuur zal er gekeken worden of de TOI in de GumbelT bevindt. Indien dit zo is, zal alleen de terugkeertijd van de TOI ingetekend worden. write_table : boolean Aangeven of je de waarden ook wilt wegschrijven naar tabellen. De tabellen welke worden weggeschreven zijn 1 csv bestand en 1 shp/dbf bestand. Return ------ geeft geen return binnen python """ print ('read his-file') # create frame table his_object = his_reader.LeesMetadata(his_file) stat_init = self._initNamespaces() stat_table1 = pd.DataFrame()# stat_table2 = pd.DataFrame()#self._initTabellen(stat_init,shp_key) print ('read shp-file') locations_df = gpd.read_file(shp_file) if parameter=='auto': parameter = his_object.hisFile.variabeleInfo.variabelen[0] print ('create png-file') # iterate locationlist and create item in table pbar = tqdm(locations_df[shp_key].tolist()) for location in pbar: pbar.set_description("location %s" % location.ljust(21)) df_enkel = his_object.EnkeleWaardenArray(location, parameter, startMMdd=(1, 1), endMMdd=(12, 31), jaarmax_as='date') if df_enkel.size > his_object.hisFile.tijdstapInfo.N: #set_trace() self.__errors__.gebeurtenissenError() stat_object = self.AfleidingParameters(df_enkel, his_object.hisFile.tijdstapInfo.N, vensterArray, GumbelT, TOI, startMMdd, endMMdd, jaarmax_as='date') if draw_plot == True: self.PlotFiguur(stat_object, out_folder) if write_table ==True: stat_tables = self.SchrijfTabellen(stat_object, shp_key=shp_key, init_tabel=False) #set_trace() stat_table1 = stat_table1.append(stat_tables.stats.df_table1) stat_table2 = stat_table2.append(stat_tables.stats.df_table2) print ('save csv-file') # join on input shapefile and write tables # save table 1 stat_table1.to_csv(os.path.join(out_folder,'waterstandstatistiek_output_1.csv'),index=False) print ('save shp-file') # prepare table 2 and save # set_trace() locations_df = locations_df.set_index(shp_key).join(stat_table2.set_index(shp_key)).reset_index() locations_df.to_file(os.path.join(out_folder,'waterstandstatistiek_output_2.shp'), driver='ESRI Shapefile') stat_table2 = locations_df print ('done') def _initTabellen(self,stat_object,shp_key): """ Initieer tabelstructuur Parameters ---------- shp_key : str key kolom vanuit de shp/dbf bestand """ stat_object.stats.df_table1 = pd.DataFrame(columns=[shp_key,'H','T','seizoen','methode']) stat_object.stats.df_table2 = pd.DataFrame(columns=[shp_key,'T10_LANDELIJK','T10_STEDELIJK', 'T25','T50','T100','r^2','a','b']) return stat_object def SchrijfTabellen(self,stat_object,shp_key,decimals=3, init_tabel=True): """ Schrijf afgeleide parameters naar tabel Parameters ---------- shp_key : str key kolom vanuit de shp/dbf bestand decimals : int aantal decimalen om af te ronden init_tabel : boolean parameter om aan te geven of de _initTabellen aangeroepen moet worden. Moet op True staan wanneer functie buiten de SingleRunner functie aangeroepen wordt. """ stat_object._initTabellen(stat_object,shp_key) # if init_tabel==True: # stat_object._initTabellen(stat_object,shp_key) # else: # stat_empty_init = self._initNamespaces() # stat_empty_table = self._initTabellen(stat_empty_init, shp_key) # stat_object.stats.df_table1 = types.SimpleNamespace() # stat_object.stats.df_table2 = types.SimpleNamespace() # try: # stat_object.stats.df_table1 = init_tabel.df_table1 # stat_object.stats.df_table2 = init_tabel.df_table2 # except Exception as e: # print(e) # set_trace() table1_list = [] table2_list = [] # gewogen gemiddelde voor jaarmaxima alle buien (# STEP 3) table1_list.append({shp_key:stat_object.stats.stap1.ID, 'H':round(stat_object.stats.stap3.WSarray_TOI_jaar,decimals), 'T':stat_object.stats.stap3.TOI, 'seizoen':'geheel jaar', 'methode':'gewogen gemiddelde'}) # gewogen gemiddelde voor maxima zomerbuien (# STEP 4) table1_list.append({shp_key:stat_object.stats.stap1.ID, 'H':round(stat_object.stats.stap4.WSarray_TOI_jaar,decimals), 'T':stat_object.stats.stap4.TOI, 'seizoen':'alleen zomer', 'methode':'gewogen gemiddelde'}) # Gumbel fit voor enkel maxima zomerbuien (# STEP 2) table1_list.append({shp_key:stat_object.stats.stap1.ID, 'H':round(stat_object.stats.stap2.GumbelWS[0],decimals), 'T':stat_object.stats.stap2.GumbelT[0], 'seizoen':'alleen zomer', 'methode':'Gumbel fit'}) # Gumbel fit voor jaarmaxima alle buien (# STEP 1) for idx, T in enumerate(stat_object.stats.stap1.GumbelT): item = {shp_key:stat_object.stats.stap1.ID, 'H':round(stat_object.stats.stap1.GumbelWS[idx],decimals), 'T':T, 'seizoen':'geheel jaar', 'methode':'Gumbel fit'} table1_list.append(item) # append to dataframe 1 stat_object.stats.df_table1 = stat_object.stats.df_table1.append(table1_list, ignore_index=True) if type(stat_object.stats.stap1.r_squared) is not str: label_r_squared_table = round(stat_object.stats.stap1.r_squared,decimals) else: label_r_squared_table = stat_object.stats.stap1.r_squared try: table2_list.append({shp_key:stat_object.stats.stap1.ID, 'T10_LANDELIJK':stat_object.stats.df_table1[(stat_object.stats.df_table1['T'] == 10) & (stat_object.stats.df_table1['methode'] == 'gewogen gemiddelde') & (stat_object.stats.df_table1['seizoen'] == 'alleen zomer') & (stat_object.stats.df_table1[shp_key] == stat_object.stats.stap1.ID)]['H'].values[0], 'T10_STEDELIJK':stat_object.stats.df_table1[(stat_object.stats.df_table1['T'] == 10) & (stat_object.stats.df_table1['methode'] == 'gewogen gemiddelde') & (stat_object.stats.df_table1['seizoen'] == 'geheel jaar') & (stat_object.stats.df_table1[shp_key] == stat_object.stats.stap1.ID)]['H'].values[0], 'T25':stat_object.stats.df_table1[(stat_object.stats.df_table1['T'] == 25) & (stat_object.stats.df_table1[shp_key] == stat_object.stats.stap1.ID)]['H'].values[0], 'T50':stat_object.stats.df_table1[(stat_object.stats.df_table1['T'] == 50) & (stat_object.stats.df_table1[shp_key] == stat_object.stats.stap1.ID)]['H'].values[0], 'T100':stat_object.stats.df_table1[(stat_object.stats.df_table1['T'] == 100) & (stat_object.stats.df_table1[shp_key] == stat_object.stats.stap1.ID)]['H'].values[0], 'r^2':label_r_squared_table, 'a':round(stat_object.stats.stap1.a,decimals), 'b':round(stat_object.stats.stap1.b,decimals)}) except (ValueError,IndexError): self.__errors__.schrijfTabelError() # append to dataframe 2 stat_object.stats.df_table2 = stat_object.stats.df_table2.append(table2_list, ignore_index=True) if init_tabel==True: return stat_object.stats.df_table1, stat_object.stats.df_table2 else: return stat_objectPKQMhkvsobekpy/io/__init__.pyPKQM nz.-.-hkvsobekpy/io/bui.pyimport argparse import pandas as pd import datetime import numpy as np import warnings # import logging # from importlib import reload # # initiatie logging # reload(logging) # logging.basicConfig( # #filename="{0}/{1}.log".format(logPath, fileName), # format='%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s', # level=logging.INFO) # # to close file: # #logging.shutdown() class __bui_class(object): class __errors__(object): """ error class met verschillende foutmeldingen """ @staticmethod def fileNotFound(file=None): raise IOError('Bestand bestaat niet. Is je pad goed? {}'.format(file)) @staticmethod def variableNotSupported(variable=None): raise AttributeError('Variabele {} wordt (nog) niet ondersteund. Zie definition information'.format(variable)) @staticmethod def builengteError(availablevalues=None,expectedvalues=None): raise ValueError('Het verwachte aantal tijdstappen {} komt niet overeen met het aanwezige aantal tijdstappen {} in de dataframe'.format(expectedvalues,availablevalues)) # @staticmethod # def metadataNotSet(): # raise AttributeError('Metadata is niet bekend. Zet met sobek.LeesMetadata(his_file)') # @staticmethod # def metadataError(): # raise AttributeError('Metadata kon tijdens de functie LeesMetadata() niet bepaald worden') # @staticmethod # def administratieError(): # raise AttributeError('Administratieblok van his-file kan niet worden uitgelezen') # @staticmethod # def locationNotFound(): # raise AttributeError('location niet gevonden. Is het een bestaande location?') # @staticmethod # def variabeleNotFound(): # raise AttributeError('Parameter niet gevonden. Is het een bestaande parameter?') # @staticmethod # def jaarmaxError(): # raise ValueError('Voor de MultiWaardenArray functie kan alleen `year` of `none` gebruikt worden als voor de jaarmax_as parameter') # @staticmethod # def gewogenGemiddeldeError(): # raise ValueError('Kan gewogen gemiddelde niet bepalen. Vereiste is minimaal 2 punten aan de linker en rechterzijde van de gekozen T') # def gebeurtenissenError(): # raise ValueError('Meer gebeurtenissen dan N.') def __init__(self): return def read_bui(self,filename): """ parse een bui-file naar een dataframe Parameters ---------- filename : str pad naar het .bui bestand Returns ------- df : pandas.DataFrame dataframe met in de kolommen de neerslag in mm voor de stations en in de rijen de waarnemingstijdstappen """ # initatie van lege immutable objects # zie: https://stackoverflow.com/a/22526544/2459096 # python2.7: obj = argparse.Namespace() # python3.x: obj = types.SimpleNamespace() self.buiFile = argparse.Namespace() with open(filename, 'r') as infile: f = infile.readlines() for i in range(len(f)): #print ('regel {0}'.format(str(i))) line = f[i] if line[0] == '*': # logging.info('regel {0} is comment'.format(str(i))) if 'GEBRUIK DE DEFAULT DATASET' in line.upper(): self.buiFile.default_dataset = int(f[i+1]) elif 'AANTAL STATION' in line.upper(): self.buiFile.aantal_stations = int(f[i+1]) elif 'NAMEN VAN STATION' in line.upper(): stations = f[i+1:i+1+self.buiFile.aantal_stations] self.buiFile.stations = [station.rstrip().replace("'","") for station in stations] elif 'AANTAL SECONDEN' in line.upper(): geb_sec = f[i+1].split() self.buiFile.aantal_gebeurtenissen = int(geb_sec[0]) self.buiFile.aantal_seconden = int(geb_sec[1]) elif 'HET FORMAT IS: YYYY' in line.upper(): T0_raw = f[i+2]#.split() idx_block = i+1 # get data block # voor elk station de neerslag in mm per tijdstap s = pd.Series(f[idx_block+2:len(f)-1]) # parse datablock to DataFrame df = s.str.rstrip().str.lstrip().str.split(' +', expand=True) df = df.apply(pd.to_numeric) # startdatum en -tijd T0_str = T0_raw.rstrip().lstrip().split() # Het format is: yyyymmdd:hhmmss self.buiFile.start_datum = datetime.datetime(*list(map(int,T0_str[0:5]))) #seconden is eruit gehaald anders str[0:6] # lengte van de gebeurtenis in dd hh mm ss lengte_gebeurtenis = list(map(int,T0_str[-4::])) self.buiFile.delta_dag = lengte_gebeurtenis[0] self.buiFile.delta_uur = lengte_gebeurtenis[1] self.buiFile.delta_minuut = lengte_gebeurtenis[2] self.buiFile.delta_seconde = lengte_gebeurtenis[3] # date_range gebeurtenis gebeurtenis_date_range = pd.date_range( start=self.buiFile.start_datum, end=None, periods=df.shape[0], freq='{0}S'.format(self.buiFile.aantal_seconden) ) df.set_index(gebeurtenis_date_range, inplace=True) df.columns = self.buiFile.stations return df @staticmethod def seconds_toperiods(total_seconds): """ Ontleedt een getal in seconden naar lijst met vaste periodes: days, hours, minutes, seconds waarbij day = 24 * 60 * 60 = 86,400 seconden hour = 60 * 60 = 3,600 seconden minute = 60 = 60 seconden Parameters -------------- total_seconds : float or int bijvoorbeeld Timedelta.total_seconds() van Pandas dataframe bv index[1]-index[0] Returns ------------- list : list of integer values [days, hours, minutes, seconds] """ #years, remainder = divmod(total_seconds,365.25*3600*24) #total seconds per year days, remainder = divmod(total_seconds, 24*3600) hours, remainder = divmod (remainder, 3600) minutes, seconds = divmod(remainder, 60) return [int(days), int(hours), int(minutes), int(seconds)] def write_bui(self,df,filename,dataset="bui",comment=None): """ Maak van een pandas dataframe een sobek buifile Parameters ---------- df : pandas dataframe index df is datumtijdas. aanname is uniforme tijdstap delta time in kolommen neerslag in mm/tijdstap kolomnaam = stationnaam filename: str path + naam buifile "{str:8}.bui" lengte buinaam is 8 tekens dataset: (optional) str [default = "bui"] options ["bui", "reeks"] type dataset, dit is voorgedefinieerd door sobek. NB. 'reeks' is nog niet ondersteund. comment: (optional) str extra opmerkingenregels die in de header van de buifile worden geplaatst RETURNS ----------- sobekbuifile : gebruiksklare buifile die door sobek2 kan worden ingelezen. Standaard format sobekbuifile: * user defined comment * Gebruik de default dataset voor overige invoer (altijd 1 bij bui, 0 bij reeks) 1 * Aantal stations 2 * Namen van Stations 'Station1' 'Station2' * Aantal gebeurtenissen en het aantal seconden per waarnemingsstap 1 3600 * Elke commentaarregel wordt begonnen met een * (asteriks). * Meteo data: neerslag stations; voor elk station: neerslag intensiteit in mm * Eerste record bevat start datum & tijd en lengte van de gebeurtenis in dd hh mm ss * Het format is: yyyy mm dd hh mm ss * Daarna voor elk station de neerslag in mm per tijdstap. 2010 11 07 00 00 00 14 00 00 00 ... space seperated values in [mm/timestep] ... """ if dataset.upper() != "BUI": self.__errors__.variableNotSupported(variabele=dataset) with open(filename, 'w') as bui: if not comment==None: #optionele commentaarregel van gebruiker bui.write("* "+comment+"\n") bui.write("* Deze buifile is automatisch aangemaakt door de buifile generator van HKV Lijn in Water"+"\n") bui.write("* Gebruik de default dataset voor overige invoer (altijd 1 bij bui, 0 bij reeks)"+"\n") if dataset.upper() == "BUI": bui.write("1"+"\n") if dataset.upper() == "REEKS": #throw error print("not supported") bui.write("* Aantal stations"+"\n") bui.write(str(df.shape[1])+"\n") bui.write("* Namen van stations"+"\n") for station in df.columns: bui.write("'{}'".format(str(station))+"\n") bui.write("* Aantal gebeurtenissen en het aantal seconden per waarnemingsstap"+"\n") timedelta = int(datetime.datetime.timestamp(df.index[1]) - datetime.datetime.timestamp(df.index[0])) if dataset.upper() == "BUI": bui.write("1 "+str(timedelta)+"\n") bui.write("* Elke commentaarregel wordt begonnen met een * (asteriks)."+"\n") bui.write("* Meteo data: neerslag stations; voor elk station: neerslag intensiteit in mm."+"\n") bui.write("* Eerste record bevat start datum & tijd en lengte van de gebeurtenis in dd hh mm ss"+"\n") bui.write("* Het format is: yyyy mm dd hh mm ss"+"\n") bui.write("* Daarna voor elk station de neerslag in mm per tijdstap."+"\n") lengte_bui = self.seconds_toperiods((df.index[-1] - df.index[0]).total_seconds()) bui.write(df.index[0].strftime('%Y %m %d %H %M %S ')+"{:0^2} {:0^2} {:0^2} {:0^2}".format(lengte_bui[0],lengte_bui[1],lengte_bui[2],lengte_bui[3])+"\n") df.to_csv(bui, sep = " ", index = False, header=False) bui.close() #controleer tijdas bui timesteps = (df.index[-1] - df.index[0]).total_seconds()/timedelta +1 # +1 om tijdstap t=0 te verreken. if int(timesteps) != int(len(df.index)): # ! error ! aantal tijdstappen en builengte komen niet met elkaar overeen self.__errors__.builengteError(availablevalues=int(len(df.index)),expectedvalues=int(timesteps)) PKQMX7c7chkvsobekpy/io/his.pyimport os try: from pathlib import Path except: from pathlib2 import Path import argparse import sys import itertools import geopandas as gpd from datetime import datetime, timedelta import copy import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter, FormatStrFormatter import numpy as np import pandas as pd from scipy import optimize import fire import warnings from hkvsobekpy.core.utils import * try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': from tqdm import tqdm_notebook as tqdm # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': from tqdm import tqdm # Terminal running IPython else: from tqdm import tqdm # Other type (?) except NameError: from tqdm import tqdm # Probably standard Python interpreter #for debugging within notebook try: from IPython.core.debugger import set_trace except: pass # for python 2/3 compatibility try: xrange except NameError: xrange = range try: get_ipython().magic('matplotlib inline') except: pass class __his_class(object): class __errors__(object): """ error class met verschillende foutmeldingen """ @staticmethod def fileNotFound(): raise IOError('HIS-bestand bestaat niet. Is je pad goed?') @staticmethod def metadataNotSet(): raise AttributeError('Metadata is niet bekend. Zet met sobek.LeesMetadata(his_file)') @staticmethod def metadataError(): raise AttributeError('Metadata kon tijdens de functie LeesMetadata() niet bepaald worden') @staticmethod def administratieError(): raise AttributeError('Administratieblok van his-file kan niet worden uitgelezen') @staticmethod def locationNotFound(): raise AttributeError('location niet gevonden. Is het een bestaande location?') @staticmethod def variabeleNotFound(): raise AttributeError('Parameter niet gevonden. Is het een bestaande parameter?') @staticmethod def jaarmaxError(): raise ValueError('Voor de MultiWaardenArray functie kan alleen `year` of `none` gebruikt worden als voor de jaarmax_as parameter') @staticmethod def gewogenGemiddeldeError(): raise ValueError('Kan gewogen gemiddelde niet bepalen. Vereiste is minimaal 2 punten aan de linker en rechterzijde van de gekozen T') def gebeurtenissenError(): raise ValueError('Meer gebeurtenissen dan N.') def __init__(self): """ SobekResultaten class. Class met methodes om een .his bestand uit te lezen. WaterstandStatistiek class. Class met methodes om een GumbleFit te bepalen """ # initatie van lege immutable objects # zie: https://stackoverflow.com/a/22526544/2459096 # python2.7: obj = argparse.Namespace() # python3.x: obj = types.SimpleNamespace() self.hisFile = argparse.Namespace() self.hisFile.tijdstapInfo = argparse.Namespace() self.hisFile.variabeleInfo = argparse.Namespace() self.hisFile.locationInfo = argparse.Namespace() def _leesHeader(self, f): """ Lees de header van het bestand Parameters ---------- f : BufferedReader Leesbaar ruw IO object Returns ------- header : array De offset van de location in bytes """ header = [] for i in range(4): header.append(f.read(40).decode('windows-1252')) return header def _infoFromHeader(self,tijdstapInfo): """ Lees informatie uit de header Parameters ---------- tijdstapInfo : str De location in string format Returns ------- beginDate : datetime De begindatum T0, waarop de andere datetime gebasseerd zijn timeStepInterval : str De eenheid waarin de stapgrote van de datetime objecten berekend zijn, dit kan zijn s [seconds], m [minutes], h[hours], d[days] timeStepFactor : int Factor welke op de stapgrote toegepast moet worden """ #items = list(filter(None, str(tijdstapInfo).replace('.','').replace(':','').split(' '))) #old items = list(filter(None, str(tijdstapInfo).replace('. ','.0').replace('.','').replace(':','').split(' '))) #set_trace() try: beginDate = datetime(int(items[1]),int(items[2]),int(items[3]),int(items[4]),int(items[5]),int(items[6])) except: #set_trace() beginDate = datetime.strptime(items[1],'%Y%m%d') scu = items[-1].replace(')','').replace("'",'') timeStepInterval = scu[(len(scu) - 1)] timeStepFactor = int(scu[0:len(scu)-1]) return beginDate, timeStepInterval, timeStepFactor def _leesAdmin(self, f): """ Lees het administratie blok """ self.hisFile.header = self._leesHeader(f) # lees info van header self.hisFile.tijdstapInfo.beginDate, self.hisFile.tijdstapInfo.timeStepInterval, self.hisFile.tijdstapInfo.timeStepFactor = self._infoFromHeader(self.hisFile.header[3]) # lees aantal variablelen self.hisFile.variabeleInfo.numVar = np.fromfile(f,np.int,1)[0] # lees aantal locations self.hisFile.locationInfo.numLoc = np.fromfile(f,np.int,1)[0] # lees variabelen self.hisFile.variabeleInfo.variabelen = [] for i in range(self.hisFile.variabeleInfo.numVar): self.hisFile.variabeleInfo.variabelen.append(f.read(20).decode('windows-1252')) # Lees locations self.hisFile.locationInfo.id = [] self.hisFile.locationInfo.locations = [] for i in range(self.hisFile.locationInfo.numLoc): self.hisFile.locationInfo.id.append(np.fromfile(f,np.int,1)[0]) self.hisFile.locationInfo.locations.append(f.read(20).decode('windows-1252').rstrip()) #self.hisFile.locationInfo.locations.append(locationInfo) # lees tijdstappen self.hisFile.headerSize = f.tell() self.hisFile.locationInfo.numTime = int((self.hisFile.hisFileSize - self.hisFile.headerSize) / (self.hisFile.locationInfo.numLoc * self.hisFile.variabeleInfo.numVar + 1) / 4) aantalBytesPerStap = int((self.hisFile.hisFileSize - self.hisFile.headerSize) / self.hisFile.locationInfo.numTime) byteNr = self.hisFile.headerSize self.hisFile.tijdstapInfo.moments = [] self.hisFile.tijdstapInfo.offset = [] for i in range(self.hisFile.locationInfo.numTime): f.seek(byteNr) moment = np.fromfile(f,np.int,1)[0] if self.hisFile.tijdstapInfo.timeStepInterval == 's': self.hisFile.tijdstapInfo.moments.append(self.hisFile.tijdstapInfo.beginDate + timedelta(seconds = (float(moment) * self.hisFile.tijdstapInfo.timeStepFactor))) elif self.hisFile.tijdstapInfo.timeStepInterval == 'm': self.hisFile.tijdstapInfo.moments.append(self.hisFile.tijdstapInfo.beginDate + timedelta(minutes = (float(moment) * self.hisFile.tijdstapInfo.timeStepFactor))) elif self.hisFile.tijdstapInfo.timeStepInterval == 'h': self.hisFile.tijdstapInfo.moments.append(self.hisFile.tijdstapInfo.beginDate + timedelta(hours= (float(moment) * self.hisFile.tijdstapInfo.timeStepFactor))) elif self.hisFile.tijdstapInfo.timeStepInterval == 'd': self.hisFile.tijdstapInfo.moments.append(self.hisFile.tijdstapInfo.beginDate + timedelta(days= (float(moment) * self.hisFile.tijdstapInfo.timeStepFactor))) self.hisFile.tijdstapInfo.offset.append(f.tell()) byteNr += aantalBytesPerStap self.hisFile.tijdstapInfo.N = np.array(self.hisFile.tijdstapInfo.moments).max().year - np.array(self.hisFile.tijdstapInfo.moments).min().year + 1 return True def _locOffset(self, loc, var): """ Krijg de offset van de variabele Parameters ---------- loc : string De location in kwestie var : string De variabele in kwestie Returns ------- locOffset : int De offset van de location in bytes """ # Zoek de index van de variabele try: varFound = self.hisFile.variabeleInfo.variabelen.index(var) except : self.__errors__.variabeleNotFound() # Zoek de index/id van de location try: # removed dictionary # locFound = next((item for item in self.hisFile.locationInfo.locations if item['location'] == loc)) locFound = self.hisFile.locationInfo.locations.index(loc) except : self.__errors__.locationNotFound() locOffset = locFound * self.hisFile.variabeleInfo.numVar * 4 + varFound * 4 return locOffset def KrijgLokaties(self):#, his_file): """ Krijg de locations beschikbaar in de his-file. Parameters ---------- his_file : str pad naar his_file Returns ------- locations : list De locations welke bekend zijn binnen het his-bestand """ #self.LeesMetadata(his_file) locations = self.hisFile.locationInfo.locations return locations def KrijgParameters(self):#, his_file): """ Krijg de parameters beschikbaar in de his-file. Parameters ---------- his_file : str pad naar his_file Returns ------- parameters : list De parameters welke bekend zijn binnen het his-bestand """ #self.LeesMetadata(his_file) parameters = self.hisFile.variabeleInfo.variabelen return parameters def KrijgTijdstappen(self):#, his_file): """ Krijg de tijdstappen beschikbaar in de his-file. Parameters ---------- his_file : str pad naar his_file Returns ------- tijdstappen : list De tijdstappen welke bekend zijn binnen het his-bestand """ #self.LeesMetadata(his_file) tijdstappen = self.hisFile.tijdstapInfo.moments return tijdstappen def LeesMetadata(self,his_file): """ Open het bestand Parameters ---------- his_file : str Volledige pad van het bestand Returns ------- Str : 'Metadata Ingelezen' """ self.hisFile.metaDataIngelezen = False myHisFile = Path(his_file) try: p = myHisFile.resolve() except: # doesn't exist self.__errors__.fileNotFound() else: # exists self.hisFile.hisFileName = str(p) # set length filesize (bytes) statInfo = os.stat(his_file) self.hisFile.hisFileSize = statInfo.st_size #f = open(str(p), "rb") with open(self.hisFile.hisFileName, "rb") as f: try: self._leesAdmin(f) except: self.__errors__.administratieError() self.hisFile.metaDataIngelezen = True return self def SelectPeriodeWaardenArray(self, df, startMMdd=(1,1), endMMdd=(12,31), jaarmax_as='date'): """ Selecteer op basis van een DataFrame de gebeurtenissen binnen een bepaalde periode (bijv. een groeiseizoen). Waarbij er de mogelijkheid is om de gebeurtenissen binnen deze periode te groeperen. Pas op: in de `EnkeleWaardenArray` en `MultiWaardenArray` wordt deze functie intern ook aangeroepen. Parameters ---------- df : pandas.DataFrame DataFrame met datetime als index startMMdd : tuple Tuple in het formaat (M,d). Bepaling van de start datum van de periode. Genoemde datum is inclusief endMMdd : tuple Tuple in het formaat (M,d). Bepaling van de eind datum van de periode. Genoemde datum is inclusief jaarmax_as : str Mogelijkheden om de DataFrame te groeperen op basis van jaar om het jaarmaxima te bepalen. Het jaarmaxima wordt bepaald nadat de slice van de jaarlijkse periode is toegepast. Keuze bestaat uit: 'date' - bepaalt de jaarlijkse maxima en geeft de maximale waarde terug met de exacte datum van deze gebeurtenis 'year' - bepaalt de jaarlijkse maxima en geeft de maximale waarde terug met het jaar van de gebeurtenis 'none' - retourneert alle gebeurtenissen in elk jaar Returns ------- df : pandas.DataFrame DataFrame met datetime als index Examples -------- Voor bepaling van het groeiseizoen: Bijvoorbeeld het jaarlijks groeseizoen loopt van 15 april tot en met 11 oktober startMMdd = (4,15) endMMdd = (10,11) betekent, slice elk jaar in april na de 15e inclusief tot aan oktober voor de 11e inclusief Voor bepaling van het jaarmaxima: groupby = 'date' A 2012-10-06 1501 2013-04-22 1534 2014-04-18 1591 groupby = 'year' A 2012 1501 2013 1534 2014 1591 """ self.startMM, self.startdd = startMMdd self.endMM, self.enddd = endMMdd # https://stackoverflow.com/a/45996897/2459096 # maak een month_day dataframe van de MultiYear DataFrame month_day = pd.concat([ df.index.to_series().dt.month, df.index.to_series().dt.day ], axis=1).apply(tuple, axis=1) # selecteer alleen de gebeurtenissen binnen een jaarlijks terugkerende periode df = df[(month_day >= (self.startMM, self.startdd)) & (month_day <= (self.endMM, self.enddd))] if jaarmax_as=='year': # groupby year en selecteer de max. # hetvolgende retourneert alleen jaren + max, willen van elk jaar de datum + max df = df.groupby(df.index.year).max() elif jaarmax_as=='date': # groupy year en selecteer de max. Returned volle datums waar de max van dat jaar was key = df.columns.levels[1][0] level = df.columns.names[1] slice_col = df.columns.levels[0][0] # next get the year maxima of the remaining gebeurtenissen idx = df.xs(key=key, level=level, axis=1).groupby([df.index.year])[slice_col].transform(max) == df.xs(key=key, level=level, axis=1)[slice_col] df = df[idx] # if there are multiple events in a single year with same value take the first df_unique = pd.DataFrame(df.index, columns=['date']) df_unique['index'] = df_unique['date'].apply(lambda x:x.year) df_unique = df_unique.groupby('index').first() slice_unique_values = df_unique['date'].values df = df.loc[slice_unique_values] elif jaarmax_as=='none': #doe niets pass return df def EnkeleWaardenArray(self, location, parameter, startMMdd=(1,1), endMMdd=(12,31), jaarmax_as='date'): """ Lees de waarden van een enkele variabele op een enkele location Parameters ---------- location : string De location in kwestie (alleen de eerste 21 karakters, anders cutoff) parameter : string De variabele in kwestie (alleen de eerste 21 karakters, anders cutoff) startMMdd : tuple Tuple in het formaat (M,d). Bepaling van de start datum van de periode. Genoemde datum is inclusief endMMdd : tuple Tuple in het formaat (M,d). Bepaling van de eind datum van de periode. Genoemde datum is inclusief jaarmax_as : str Mogelijkheden om de DataFrame te groeperen op basis van jaar om het jaarmaxima te bepalen. Het jaarmaxima wordt bepaald nadat de slice van de jaarlijkse periode is toegepast. Keuze bestaat uit: 'date' - bepaalt de jaarlijkse maxima en geeft de maximale waarde terug met de exacte datum van deze gebeurtenis 'year' - bepaalt de jaarlijkse maxima en geeft de maximale waarde terug met het jaar van de gebeurtenis 'none' - retourneert alle gebeurtenissen in elk jaar Returns ------- df : DataFrame DataFrame met een multicolumn van variabele en locations met datetime index en de bijbehorende waarden Examples ----------- location = '1' parameter = 'Waterlevel maximum (mNAP)' Intern worden alle inputs afgekort op [0:20] en ziet de tool het als: location = '1' parameter = 'Waterlevel maximum (' Voor bepaling van het groeiseizoen: Bijvoorbeeld het jaarlijks groeseizoen loopt van 15 april tot en met 11 oktober startMMdd = (4,15) endMMdd = (10,11) betekent, slice elk jaar in april na de 15e inclusief tot aan oktober voor de 11e inclusief Voor bepaling van het jaarmaxima: groupby = 'date' A 2012-10-06 1501 2013-04-22 1534 2014-04-18 1591 groupby = 'year' A 2012 1501 2013 1534 2014 1591 """ if not hasattr(self.hisFile, 'metaDataIngelezen'): self.__errors__.metadataNotSet() if self.hisFile.metaDataIngelezen == False: self.__errors__.metadataError() loc = location[0:20] var = parameter[0:20] with open(self.hisFile.hisFileName, "rb") as f: varLocOffset = self._locOffset(loc, var) values= [] for i in range(self.hisFile.locationInfo.numTime): offset = self.hisFile.tijdstapInfo.offset[i] + varLocOffset seek = f.seek(offset) values.append(np.fromfile(f,np.float32,1)[0]) # maak dataframe df = pd.DataFrame(data=values, index=self.hisFile.tijdstapInfo.moments, columns=[(loc,var)]) df.columns = pd.MultiIndex.from_tuples(df.columns, names=['location','parameter']) df = self.SelectPeriodeWaardenArray(df, startMMdd=startMMdd, endMMdd=endMMdd, jaarmax_as=jaarmax_as) return df#.T.squeeze() def MultiWaardenArray(self, locations, parameters, startMMdd=(1,1), endMMdd=(12,31), jaarmax_as='year', drop_lege_jaren=True): """ Lees de waarden van meerdere variabelen op meerdere locations Parameters ---------- locations : list Een list van de locations (type: str) in kwestie (alleen de eerste 21 karakters, anders cutoff) parameters : list Een list van de parameters in kwestie (alleen de eerste 21 karakters, anders cutoff) startMMdd : tuple Tuple in het formaat (M,d). Bepaling van de start datum van de periode. Genoemde datum is inclusief endMMdd : tuple Tuple in het formaat (M,d). Bepaling van de eind datum van de periode. Genoemde datum is inclusief jaarmax_as : str Mogelijkheden om de DataFrame te groeperen op basis van jaar om het jaarmaxima te bepalen. Het jaarmaxima wordt bepaald nadat de slice van de jaarlijkse periode is toegepast. Keuze bestaat uit: 'year' - bepaalt de jaarlijkse maxima en geeft de maximale waarde terug met het jaar van de gebeurtenis 'none' - retourneert alle gebeurtenissen in elk jaar drop_lege_jaren : boolean Mogelijkheid om de jaren te verwijderen welke geen gebeurtenissen bevatten voor de gegeven selectie. Wanneer dit als `True` is geselecteerd zal het jaar alleen gedropt worden als deze niet bestaat voor alle locations/parameters in de selectie Returns ------- df : DataFrame DataFrame met een multicolumn van variabele en locations met datetime index en de bijbehorende waarden Examples ----------- locations = ['1','6'] parameters = ['Waterlevel maximum (mNAP)'] Intern worden alle inputs afgekort op [0:20] en ziet de tool het als: locations = ['1','6'] parameters = ['Waterlevel maximum ('] """ # error checking if jaarmax_as not in ('year', 'none'): self.__errors__.jaarmaxError() # define empty dataframe clmns = pd.MultiIndex.from_product([parameters,locations], names=['parameters','locations']) # voor een MultiWaardenArray wordt alleen een jaar meegenomen als index # het hangt van een seizoen filter af of er gebeurtenissen voor dat jaar zijn. Bepaal dit eerst loc0 = self.hisFile.locationInfo.locations[0] par0 = self.hisFile.variabeleInfo.variabelen[0] idx = self.EnkeleWaardenArray(loc0, par0, jaarmax_as=jaarmax_as).index self.hisFile.tijdstapInfo.N df_full = pd.DataFrame(index=idx, columns=clmns) df_full.index.name='date' for ix in clmns: df = self.EnkeleWaardenArray(location=ix[1], parameter=ix[0], startMMdd=startMMdd, endMMdd=endMMdd, jaarmax_as=jaarmax_as) df_full.loc[:,(ix[0],ix[1])] = df.T.squeeze() # bepaling of lege jaren gedropt moeten worden if drop_lege_jaren: df_full.dropna(axis=0, how='all', inplace=True) return df_full def read_series(self, his_file, location, parameter, his_folder, normalize_by_unicode=True, include_simularity=True, sequence_simularity=0.82, return_matching_parameter=False): """ Extract timeseries from his-file Parameters ---------- his_file : str name of his-file to query (e.g: 'reachseg', 'calcpnt', 'struc') location : str location to query in his-file parameter : str parameter to query in his-file his_folder : str path to folder containing the his_file normalize_by_unicode : boolean (default True) inlcude this option to include NFKD unicode compatibility decomposition. see: http://unicode.org/reports/tr15/ include_simluratiy : boolean (default True) include this option to include Ratcliff/Obershelp pattern recognition sequence_simularity : float (default 0.82) number between 0.0 and 1.0, function as threshold, where only a simularity above this value is mapped Returns ------- df : pandas.DataFrame timeseries containing all available timesteps in his-file """ # get metadata from appropriate his-file hisfile = self.LeesMetadata(os.path.join(his_folder, '{0}.his'.format(his_file).upper())) his_parameters = hisfile.KrijgParameters() his_locations = hisfile.KrijgLokaties() # normalize unicode and/or check simularity of parameters parameter = compare_df_parameter_his_parameter(parameter.ljust(20), his_parameters, normalize_by_unicode, include_simularity, sequence_simularity) # get dataframe for single location/parameter combination df = self.EnkeleWaardenArray( location=location, parameter=parameter, jaarmax_as='none') if return_matching_parameter == True: return df, parameter else: return df PKQMь"hkvsobekpy-1.2.5.dist-info/LICENSE GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . PK!HJVSa hkvsobekpy-1.2.5.dist-info/WHEEL HM K-*ϳR03rOK-J,/RH,rzd&Y)r$[)T&UD"PK!H_7Kg#hkvsobekpy-1.2.5.dist-info/METADATAMP;o0+nlU9.:@$D;_\ؖ5B{%0Yj&IA?Lѵ4xj^cG W :e '=P 埦,lHHҗҝ/Vڍz)}p])HabM64F,s]PԄ֎;!iD6@o%FLv`/u{՜`E8ְ~1m xZYPK!H!hkvsobekpy-1.2.5.dist-info/RECORD͒k@@< 4A,"ABB bFFlJݹ5yNpge;!! E;QpM[wXV|ULq3Ӌ΂I-)eߊ"X4] +VVND y4wq'=x-~wz cXA21",5m;8IHX0p: D-\t<9r$K{쬻g:NΉMl/ůVKLjd] YIDfk]:vp)I~.g>G>@btX9 _}=I{i{v1R~Vǭ9\=]Qp